NIUF 404-92

North American ISDN Usars Forum
Application Software Interface (ASI)

Part 3: Enhanced DOS/Protected M ode Shell Access
Method (Version 1)

Approved: June5, 1992
Updated: October 30, 1992

Application Software Interface Expert Working Group
ISDN Implementors’ Workshop
North American ISDN Users’ Forum




Revision History

June 1992 Baseline Approved Document (NIUF 404-92)
October 1992 Corrections and additions
March 1993 Editorial corrections



Abstract

This document describes the Application Software Interface (ASI) "Enhanced DOS/Protected Mode Shell Access
Method". This access method isintended to operate on a DOS personal computer. Thisincludes, but isnot limited to,
PC-DOS, MS-DOS and all compatible operating systems. Although it isadesired goal to have acommon ASl for all
operating systems, this specification will only apply to the DOS environment.

The following restrictions also apply:
+ DOSVersion 3.3 and above

e Microsoft Windows Version 3.0 and above

Keywords

application programming interface; API; Application Software I nterface; ASl; access method; DOS; implementation
agreement; Integrated Services Digital Network; ISDN



Notice of Disclaimer

This specification was developed and approved by organizations participating in the North American ISDN Users
Forum (NIUF) meetings in June 1992. The National Institute of Standards and Technology (NIST) makes no
representation or warranty, express or implied with respect to the sufficiency, accuracy, or use of any information or
opinion contained herein. The use of thisinformation or opinion is at the risk of the user. Under no circumstances
shall NIST beliablefor any damage or injury incurred by any person arising out of the sufficiency, accuracy, or use of
any information or opinion contained herein.



Acknowledgments

NIST would like to acknowledge the NIUF Application Software Interface Expert Working Group, and especialy the
following individuals, for their valuable contributions to this document:

Kenneth A. Argo
Ron Bhanukitsiri
Cheng T. Chen
Stephen Halpern
Frank Heath
Chris Nix
Stephen Rogers
Chris Schmandt
Ben Stoltz
Robert E. Toense
Adrian Viego
Wayne Yamamoto

ICL

Digital Equipment Corp.
Teleos Communications, Inc.
NYNEX Science and Technology
Rockwell CMC

IBM

Electronic Data Systems
MIT MediaLab

Sun Microsystems, Inc.
NIST

Bellcore

Sun Microsystems, Inc.



Vi



1.0.
2.0.

3.0.

4.0.

5.0.

6.0.

7.0.

NOLICE Of DISCIAIMES ... e s v
ACKNOWIEBAGMENTS ...t Y
100 o SRR 1
Enhancementsand REStIICHIONS .....cc.vcviiieiieie et nns 1
2.1 OVEIVIBIW ..ttt b e st b e b st b Rt b et bt b et b et b etk e e e b e ne e b se e b nb e st st st 2
Address ResolUtion DEVICE DI IVEN ........ocuiiieeeiereeeeesee et see e nne s 3
3.1 (0= VP 3
3.2. ARDD SPECITICAIION. ....cvieitiiitiriete ettt st e b e et se et st sb et e st ebe e 3
3.3 BaSiC ARDD SEIVICES ...ecueeuieiieeeeeerte sttt se e s e e seeseeeeee e eseeses e ssestessesaessestessessensensensenessesneenessesseses 4
34. Microsoft Windows Standard Mode SUPPOIT.........c.eerirririeirieerieereeeneeeseeesees e 7
3.5. Microsoft Windows Enhanced Mode SUPPOIT .........cerireririeirieerieerieereeeseeeseees e 7
351 Virtual Device (VXD) SPeCifiCatioN .........oueeirieirieireereeereenere s 9
3.6. DOS Task SWILChEr SUPPOIT.......c.ciuieirieiirieirie et 9
3.7. Other Protected MOde SNEIIS.......ocoiieeeeee e see s 9
ARDD MESSAgE FOIMAL.......coiiiiiiii it 9
41. ARDD COMMENG FOMMEL.......c.ceiieirtiiieieeese st st et see e e sessesteseeseesbesbeseeseenseneeneenessessessens 10
4.2. ARDD COMMENG SEL......veiitiiitiecie ettt ettt s be e seesbe e sheeeseesbessbeesbessabeesseesaseesaeesseesrenans 10
ARDD Command Set DESCIIPHION .....cceiiiieeiieie ettt e 10
5.1. ARDD REUESE IMESSAJES .......ceiieiiiriieieieseres ittt sbs s sesbsb e se bttt bbb e bbb e b ebenens 11
5.1.1. AR-BIND_MC regquest [OX02] ........ccccrurueerirerieienenirieieesesesisiesesesis e sessssssesssssssseseseseas 11
5.1.2. AR-BIND_UP request [OXO4] .......ccorureeerrerieenenisieiee s sssese e 12
5.13. AR-UNBIND_MC request [OX0B] .......ccoerererrererinerieirenerisisesesesisiesesesiesssesesesseseseseseas 13
5.14. AR-UNBIND_Up requESt [OX08]......ccueuerererieieirerieieiesesesisiesesesissesesessesssessssssesesesesens 13
5.2. ARDD Confirmation MESSAES. .....cc.eiutruiierieriirterieseeseeeeiesiesiessesessesbesaeseesbesbeseeseesenseeesessessesnens 14
5.2.1 AR-BIND_Mc confirmation [OX0L] .......cccceeererererinienie e 14
5.2.2. AR-BIND_Up confirmation [OX03] ........cceuruerererererueererineeiesesesiseseseseesssesesesssseseseseas 14
5.3. ARDD INdiCaLION MESSAGES .....ccueeuerteriirtisieste st iesee st e et e e sbe s e saesbesbeseesbesbese e e e e e s e e enesnesnesnens 14
5.3.1 AR-UNBIND_MC indication [OX05] .......ccuurueuerirererueenererieienesesieiesesesissssesesesseseseseseas 15
5.3.2 AR-UNBIND_Up indication [OXO7] ......ccouuruererinerinieenerinieesesesieesesesessssesesesssseseseseas 15
5.33. AR-UNBIND_ALL indication [OX09] ......c.cceererererueerereniereneresieienesesissssesesesseseneseseas 15
5.34. AR-LOST_MESSAGE indication [OX10] ......ccourerurueeerereriereneresieieesesessesesesesieeesesesens 15
54. ARDD RESPONSE IMESSAQES. .....eetieutiiteetieteesteeeeseeeeestessaessessbesseebesseassesssasseesesseaasssaeessesasessesnnans 15
@ O I Vo | ) = PSS 16
6.1. Get Device Information [Minor Code=80N].........cccureriririeriiiniere e e 16
6.2. Get Return/Status [Minor COOE=8LN] ....c.cueiieeieiereeeeterie ettt 16
6.3. Get Header Address [Minor Code=82h] ..........ccorirrnireie e e 16
N 2 T = Yo 1 L =P S S 17
7.1 AARDD ...ttt R R R R Rt r e 17
7.2. ARDD INT 2Fh FaCilitieS - AE ACCESS ....c.eiereereieeresieieesesssiesee st ssenenns 17
7.2.1. “Query SUPPOIt” [ALZ00N] ......ccoeieiieieriericeeee e s e e enens 17
7.2.2. “OPEN" [ALZL0N] .ot 17
7.2.3. “CIOSE” [ALT20N] .o 17
7.2.4. “TOCTL” [ALZ30N] vttt 18
7.25. “GENIOCTL” [ALZA0N] ..oviiiiiereeiereeres st 18
7.3. ARDD INT 2Fh FaCilitieS - PE ACCESS.....corieerereriresieieiesrsieee s 18

Vii



7.3.1. “ QUENY SUPPOIT” [ALZ00N] ....eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesessessessssses s eeeeeeeeeeeee 19

7.3.2. “BROADCAST” [ALZL0N] .ttt s 19

7.33. “DEBUG" [AXZ0FFFFN] ..ottt 19

74. Microsoft Windows Enhanced Mode Shell ... 19

7.4.1. Call-IN SEIVICE. ..ottt bbb 19

7411 Enhanced Windows Installation Check [AX=1600N] ........cccccerrerieriererierereennn 20

7412 Release Current VM's Timeslice [AX=1680N] .......ccccererrreneeienirerenenere e 20

74.13. Begin Critical Section [AX=1681h].........ccccriiririirire e 20

74.14. End Critical Section [AX=16821] ........ccceoririririrere e 20

7.4.1.5. Get Current VMID [AX=1683N] .....ovvvereiiririeiienirieieie st 20

7.4.1.6. Switch VMs and Callback [AX=1685h] ..........ccecrruereerrinreierenerinieesesesieenenennas 20

7.4.2. CAll-OUL SEIVICE ....vveiieiieetere etttk 20

7421 Enhance Windows and 286 Extender Init [AX=1605h] .........ccccceeriervrirrrnnnn. 20

7422 Enhance Windows and 286 Extender Exit [AX=1606h] ..........ccccccveerverierrrnnnn. 20

74.23. Enhance Windows Init Complete [AX=1608h] ........ccccerererererierierenerere e 20

74.24. Enhance Windows Begin Exit [AX=1609N] .........ccccoeerirerenerenenerenesese e 20

7.5. Microsoft Windows Standard Mode Shell ... 20

7.6. MS-DOS Task Switcher (DOSSHELL.EXE) .......cccoriieiniinietinrieiee st 20

8.0. Callback FUNCLION DEfiNITIONS. ......cceiiiiiiriesireeee e 21
8.1. AR Management Function Callback Definition..........ccceoviieeniiiiiesie s 21

8.2. Management/Control Plane Callback Definition ...........ccccveivieviiine s 21

8.3. User Plane Callback DEfiNITION ........ccoeiiiiiieirieirecsesse sttt s sre e 21

9.0. Registration and BiNAiNG ProOCESS ........cccoiveiueieeriiiiseeseeseeseeseeeeeseessesessseessessessseessens 22
9.1. Registration and Binding USING IOCTLS.......cceiereeieeerere e se et e e seeees e ee e esesse e ssenees 22

9.2. Registration and Binding Using INT 2Fh FaCilities..........ccovivviiinie v 24

9.3. Registration and Binding Using Direct ARDD CallS........cccvivviiinenennrcneseeseeesese s 24

10.0. Making Device Driver CallSDIr€Ctly .....ccieivieieeieeeseee e 24
10.1. Acquiring the Device Header AQArESS..... ...t 24

10.2. Building a Device Driver REQUESE PACKEL ...........ccovuiiriiiiieeiereeie e 24

10.2.1. REGUESE HEAEY ...t 24

10.2.2. Device Driver Command COUES........ccoveererererereseseseeseese e seeee e seesessese e seeseeses 25

10.2.2.1. INIT Command [O0N] .......coueeruirirrireerereeereeeree e 25

10.2.2.2. IOCTL Output Command [OCH] ......cooeerririeirieirieeriereeeseees s 26

10.2.2.3. Open and Close Command [ODh and OER] ........cc.cceieiinennenneesenese e 26

10.2.2.4. General IOCTL Command [O13N] ......coveuereeerieirieirieesiee et 26

Appendix A. EFTOF COUBS ...t 27
A.l GENEral ENTOr COUBS ......coveieiirieieries ettt bt et b et s et et nennanes 27

A.2. Bind Procedure Error COUES........oivirieiirieirieierie sttt st st ae e sae bt ne st seebe e 27
Appendix B. Future ENhanCements...... ..o 28
Appendix C. GlOSSANY OF TEIMS....cieiiieieie e 29
Appendix D. Sample Code -- DOS FUNCLIONS........ccoiiiiiieiesierie e 31
D.1 Open File with Handle (0X3D) .........cccuiueiiieiiiciieii e 31

D.2. Close File With HaNdI€ (OX3E) ......c.ciueiriiiriirieeeieteseeienie st 31

D.3. Send Control Data to a Character Device (OX4403) ..o 32

D.4. GENEral IOCTL (OXA40C) ....ouiereeereeereeeeeereresieeeesesessesesesessesesesesteseeseseeseseesessssenesessesenesessesenensses 32

D.5. Multiplex INterruptS (INT 2FN) ..ot e 33

viii



Appendix E.
E.L

E.1L
E.1l.2.
E.13.

E.2.

E2.1
E.2.2.
E.2.3.
E.2.4.

Appendix F.

Appendix G.
Appendix H.

Appendix I.
l.1.
1.2.
1.3.

1.3.1.

1.4.
[.5.
1.6.
1.7.

Appendix J.

J1
J2.

Appendix K.

K.1.
K.2.

Appendix L.
L.1

Appendix M.

M.1
M.2
M.3
M.4

SAMPIE COUE == AE/PE ...ttt nne s 35
(€1 10O 1 o T 35
Get Device Information [Minor Code=80N].........ccccerierrrerereereererreseeeresesesesee e 35

Get Return/Status [Minor Code=81h] .........ccccvviirerierrririerereeeeeeseesee s e 35

Get Header Address [Minor Code=82h] ........ccccvvvriererererereeeeesseeeeesese e seeseesnens 36

N = o =S LS o =P 36
INT 2Fh “Open” FUNCHION......ccoiiieiereeeeeeeee sttt e e srenns 36

INT 2Fh “ClOSE” FUNCLION ..ot sre e 37

INT 2Fh “TOCTL" FUNCHION. ...c.tititiiieiirieerieeeie sttt st sb et 37

INT 2Fh “GENIOCTL” FUNCLION......c.ciiirieirieinieresie sttt nesre e 38
......................................................................................................................... 40
......................................................................................................................... 41
......................................................................................................................... 42
Sample Code -- ARDD.........oo e 43
THE ARDD HEAHEN ..ottt ettt sttt sa et s a et ne st ne e st 43
HOOKING the INT 2FN VECION......c.i ittt ene e 44
THEINT 2N PrOCESS.... oottt sttt et e s be e e e s be et e ereeneesanesresneeseesneens 45
Preventing the loading of Microsoft Windows............cccoeereneininnenncecseeeees 45

“OPEN” PrOCESS.......ciuiiiiitieririe ittt ettt et r bt s bRt r e se e sr e R e e e sn e e e s e e e e eneeaesneerens 45
“CIOSE" PrOCESS ....c.vicueeteeiecte et et e ste st e s te st e s teetesbeesbesteeatesteeabeebeanseeaeeaseaaeesaeeneesbeentesteentesteantenseanes 45
B O O R =, (oo =S TSRS 46
“GENITOCTL” PrOCESS .....viueitiseetiiesissesesiesessesessesessesessassssessesessesessessssessssensssessssensssessesessessssessssens 46
SAMPIE COAE == VXD ..ottt 47
ASIARDD.386 Source File (8S1ardd.aSmM) ......ccoveeereeerieisieiisieie sttt 47
ASIARDD.386 Definition file (aSiardd.def) ........cooveireiineieceesec e 50
Sample Code -- Protected M OU€ ACCESS........ccovevieeieeiieneeiesee st esresee s 51
DPMI ACCESS SEIVICES ....eveeuiitietiete et steesteseesteseestesaaesteeaesteessasteessesseeseaseessesaeessesseessesneessesneens 51
Microsoft Windows GUI AppliCatioNS ACCESS .......cceereririereriinienie et sne e 51
S U (o U [ = OSSPSR PSR 52
Get Device INfOrmation SLIUCIUIE .......ccueieieiereceeie et e e s eneerenne e 52
REFEIEBNCES. ...ttt sttt sae e sbe e sareennee s 53
ANS DOCUMENES ... eeeueeieeeiesteeiesteetesseesteeseesseeeesseeseesseessesseessesseessesssessenssesseensesseessssseessesseessesnenns 53
(OO I I I T o 4= 1P 53
[ SO DOCUMENES.......uveieeuiesieeiesseeeesseeseesseeseeseesseseessesseessesseessesssessenssesseensesseessesseessesseessesneessnsnenns 53
(01 0T= g T Tor U0 1= 1 £ 53






1.0. Scope

This document describes the Application Software Interface (ASI) “ Enhanced DOS/Protected Mode Shell Access
Method”.

This access method isintended to operate on a DOS personal computer. Thisincludes, but isnot limited to, PC-DOS,
MS-DOS and al compatible operating systems.

Although it isadesired goal to have acommon ASl for all operating systems, this specification will only apply to the
DOS environment.

The following restrictions also apply:
e DOSVersion 3.3 and above
e Microsoft Windows Version 3.0 and above

Note:  There are references to Microsoft Windows 3.1 in this document. These are for reference only at thistime
and do not affect system requirements.

2.0. Enhancements and Restrictions

The following enhancements have been made over the DOS Access Method Version 1:

»  Thisaccess method allows DOS applications running in real mode and within a Virtual Machine (VM)
to have accessto the ASI.

* Facilities have been added to extend accessto resident devices. These extensions utilize the “Multiplex
Interrupt” (INT 2Fh) and will allow for an ASI Entity (AE), implemented as a device driver, to access
the Address Resolution Device Driver (ARDD). These services should only be used for inter-device
driver communications. An AE implemented asa Terminate but Stay Resident (TSR) application which
utilizes these services will not be considered compliant with this specification.

* Facilitieshave been added to allow an AE or Program Entity (PE) to send messagesto the ARDD directly
(i.e, without using INT 21h facilities).

»  Thisissue supports the capability for multiple AE and PE entities given the following restrictions:

es  Multiple AEsmay exist ONLY if the ARDD provides support for such as described in the
ARDD specification section.

e« An AE may be bound to one (1) PE at any time.
e« A PE may be bound to multiple AEs.

»  Microsoft Windows 3.0 and above operating in “Enhanced Mode (80386 and above)” is supported.
There isno provision at thistime for “ Standard Mode (80286)" or “Real Mode (8086)” operation.
Standard M ode may be addressed in future versions of thisdocument. Real Mode will not be addressed,
asit will not be supported by Microsoft Windows beginning with version 3.1.

»  Microsoft Windows Graphical User Interface (GUI) applications may access ARDD facilities through a
Dynamic Link Library (DLL). The DLL must be placed in afixed memory segment.

The following restrictions also apply:

* TheAE must beaglobal entity. This meansthe AE code must be present within adevicedriver (loaded
in*“config.sys”) or aTSR application. In either case the AE must be loaded prior to any protected mode
shell.



* The ARDD will hook the INT 2Fh vector. Once hooked the ARDD will process and use information
that is placed over that channel by a protected mode shell. The ARDD will aso process inter-device
commandsfrom AE(s). These services should only be used for inter-device driver communications. An
AE implemented as a Terminate but Stay Resident (TSR) application which utilizes these services will
not be considered compliant with this specification.

Note:  Only the Microsoft Windows Enhanced Mode shell is currently supported. Future enhancements to this
document will add support for the Microsoft Windows Standard Mode shell and the DOS-5 DOSSHEL L.
Other shells may be supported in future revisions of this document.

2.1. Overview

The ASI access method must support the transfer of information and thread of execution across the interface. To
accomplish these functions and provide for implementation independence, the “ Enhanced DOS/Protected M ode Shell
Access Method” utilizes a number of thread transfer mechanisms commonly found in PC applications today.

The DOS environment supports only a single thread of execution and a single process. While this access method
allowsfor a shell to be placed above the access method to alleviate some of these shortcomings, the main device
interface does lay under the shell and thus s still within the DOS environment and must deal with its shortfalls.

In the DOS environment, the ASI must provide the basic mechanism to transfer the thread of execution across the
interface. This mechanism must be available from either side of theinterface. To accomplish thistask the “Enhanced
DOS/Protected Mode Shell Access Method” will utilize one or more of the following mechanismsin both the AE and
PE:

e Far calsto addresses (similar to the “DOS Access Method”)
e Softwareinterrupts (INT 60h - 66h)
e Multiplex Interrupt (INT 2Fh)

To resolve the parameters for these mechanisms, the “ Enhanced DOS/Protected Mode Shell Access Method” has
defined adynamic linking mechanism referred to asthe “ Address Resolution Device Driver” (ARDD). The ARDD is
defined in detail in the next section.

One difference between the bind procedure within the “Enhanced DOS/Protected Mode Shell Access Method” and
that of its earlier relative, the “DOS Access Method” is the physical location of the remote entity's callback routine.
In the “ Enhanced DOS/Protected Mode Shell Access Method” this address resides within the code segment of the
ARDD. Inthe“DOS Access Method”, the calling entity was passed an address that resided within the called entity's
code segment. The callback functions still exist; they are just executed through the ARDD. Actual operation and use
has not changed from that of the “DOS Access Method”. It has, however, been enhanced to support an extensive list
of calling options.

ASI functionality requiresthat the ASI provide three basic services; management, control and data. The management
and control plane servicesin the “Enhanced DOS/Protected Mode Shell Access Method” areimplemented asasingle
ASI function. Multiple management/control (M/C) functions may be available to a PE if it has bound to multiple
AEs. The number of such connections will depend on the level of support provided by the specific ARDD
implementation (see the section titled “ Overview of the Address Resolution Device Driver”, in this document, for
further information). Data services are provided by means of auser plane (UP). The user plane serviceis defined as
aseparate AS| function. There may be morethan one user plane function associated with an AE or PE. It should be
mentioned however, that there may be alimitation on the actual number of call lotsavailableto the entity. A call slot
isaportion of the ARDD code that isresponsible for passing packets to abound entity. This number may be obtained
by acall to the “Get Device Information” IOCTL (refer to the section titled “Get Device Information” in “IOCTL
Facilities’, in this document).

The information transfer mechanism across the ASI will be specific to the access method function. For all
management/control plane transfersthe calling entity (AE or PE) will format amessage. This message will be passed
across the interface by reference (a message pointer). The called ASI access method management/control function



will be responsible for transferring the contents of that message at the time of the call. As soon asthe called entity
returns to the calling entity the message pointer and its contents will be invalid.

The user plane function is similar to the management/control plane. Messageswill be passed across the interface by
reference (amessage pointer). The called ASI access method user plane function will be responsible for transferring
the contents of the message at the time of the call. As soon asthe called entity returnsto the calling entity the
message pointer and its contents will be invalid.

3.0. Address Resolution Device Driver

The Address Resolution Device Driver (ARDD) is a generic address resolution utility defined for DOS. Itis
responsible for supplying a standard software level mapping layer between the ISDN vendor's hardware and
software (AE) and an application that wishes to utilize ISDN services (PE).

3.1 Overview

The introduction of DOS Protected Mode (PM) shells has added a new level of complexity to device driver
requirements. PM shells allow multiple applications to be loaded concurrently into a PC. Many PM shells support
larger amounts of memory than is physically resident in the PC. Thisis accomplished by using part of the hard drive
as aswap areafor inactive portions of application code. Thistype of memory is called “virtual memory”. Lastly
some of these shells create a multi-tasking environment for DOS applications. The ARDD must be able to exist in
this environment.

Most of the ASI driver resides beneath the protected mode multi-tasking shell. This simplifies the services that must
be supplied by an ARDD implementation. An ARDD must be able to monitor the status of any Virtual Machine
(VM) with which it has an active connection.

Most protected mode shells provide some level of communication with a DOS device driver. Microsoft Windows
Standard Mode (version 3.1 and above) and the DOS-5 DOSSHEL L kernels supply similar servicesto adevicedriver
about VM status. Microsoft Windows Enhanced Mode (version 3.0 and above) supplies no such servicesto aDOS
devicedriver. It does, however, provide facilities to allow a device driver to force activation of a particular VM for
servicing and callbacks. Microsoft has defined a new type of device driver in the enhanced mode; Virtual Device
Driver (VxD). VxDs are required as aresult of the multi-tasking environment created by the enhanced kernel. In
enhanced mode, any number of applications may simultaneously request service from asingle DOS device. This
may be monitored and arbitrated by aVxD. VxDs also receive al indications about VM status. In this specification
aVxD isused to receive these VM status messages and “ broadcast” them to the ARDD for servicing (refer to the
section titled “ Virtual Device Driver Specifications’, in this document, for further details).

Note:  Further information on Microsoft Windows Virtual Device Driversis available in the “Microsoft Windows
Device Development Kit”.

Even though this interface supports multiple entities, it is not necessary that this support be implemented. The
developers of the ARDD should document the level of support provided by their ARDD. Thisincludes the number of
AE entry points. Services such as INT 2Fh facilities must be an integral part of al implementations, although the
level of such support may vary. The capabilities of aspecific driver will be availableto an application viaacall to the
“Get Device Information” General IOCTL (refer to the section titled “ Get Device Information”, in “1OCTL
Facilities’, in this document).

Note:  An“entry point” isacharacter device within the ARDD that is used to provide service to an AE or PE.

3.2. ARDD Specification

The ARDD is a character device driver which may supply different levels of support as defined in the following
sections.



3.3.

Basic ARDD Services

This section defines the basic facilities that must be supported by any ARDD implementation. An ARDD which
provides only the level of support defined in this section may be used by real mode applicationsonly. A task switcher
such as Microsoft Windows may not act properly with an ARDD providing only basic support.

An ARDD providing basic level support is compatible with the “DOS Access Method” as defined in part 2
of the ASI specification.

Note:

Note:

In the following section an “entry point” refers to the character device within the ARDD that is used to
provide serviceto an AE or PE.

1.

6.

The ARDD contains multiple deviceslogically linked together. The namesshall be: “ARDDAENN” and
“ARDDPEQQ”. The“nn” represents a numeric beginning with “00”. Thefirst namein the ARDD will
be known as“ARDDAEQQ". Support for thisdeviceaswell as* ARDDPEQOO” is mandatory. Additional
devices, if supported, may be added by passing acommand line argument during load time (refer to item
6 for information on command line parameters). There are no requirementsasto the number of AE entry
points an ARDD implementation must supply.

The device attribute word in the device header shall be coded such that the device is a character device
that will support “open”, “close”, “IOCTL Read”, “IOCTL Write’ and “Generic IOCTL” calls. This
value should be 0xC840.

The ARDD will allow one “open” per device (i.e., devices are non-sharable).

“Initialization”, “ Open”, “Close”, “|OCTL Read” and “ Generic IOCTL" arethe only commandsthat the
ARDD will process.

An entry for the ARDD must be included in the “config.sys’ file driver list prior to any AE that may
utilize INT 2Fh facilities (refer to item 12 for INT 2Fh facilities supported by the ARDD).

Command syntax for loading the ARDD will be as follows:

Note: Parameters between []s are optional parameters.

DEVICE=<driver name> /AEM:xxh [/AE:n]
Example:

DEVICE=ASI_ARDD.SYS/AEM:57h /AE:2

The INT 2Fh handle for AE entry point(s) (AEM) will be 57h. The“h” following the“7” denotes
hexadecimal (base 16). If the“h” isomitted, the value is assumed to be decimal (base 10).

Note: The“/AEM” isarequired parameter. If this parameter is omitted, the ARDD will return an error

and unload itself.

The ARDD will load and initialize two (2) AE entry points using the names “ARDDAEQQ” and
“ARDDAEOQ1".

Note: If no“/AE" parameter isincluded, the ARDD will assume the existence of one (1) AE entry

point (“ARDDAEOQQ"). This keepsthe ARDD compatible with the “DOS Access Method” as
described in part 2 of the ASI specification.

Note: If any parameters areinvalid (i.e., “/AEM:A5” would be in error because an “A” isnot avalid

numeric for base 10), the ARDD will return an error and unload itself. Likewise a parameter
greater than that supported by the ARDD will cause aload failure (i.e., /AE:nn greater than that
supported by the ARDD device driver).



7.

9.

The ARDD should hook the INT 2Fh chain in order to block the loading of any shell which may cause
erratic system operation (refer to Appendix I; Hooking the INT 2Fh Vector). Sincean ARDD
implemented with basic level support does not allow protected mode shell use, any attempt to load such
shells should be blocked. Below are procedures which may be used to block the loading of some
protected mode shells.

a.  When Microsoft Windows begins loading the Standard or Enhanced mode kernels it will
broadcast an INT 2Fh with AX=1605h. In order to prevent the Windows kernel from
loading the ARDD should place anon-zero valueinthe CX register and return (IRET). The
ARDD should display an error message prior to the IRET since Microsoft Windows will
not display any indication of the cause of the failure. (Refer to Appendix I; Preventing the
Loading of Microsoft Windows.)

Note:  Thereisno broadcast by Microsoft Windows to terminate the loading of the
Microsoft Windows Real Mode Kernel. However, real mode will not be supported by
Microsoft Windows beginning with version 3.1.

Note:  Thereisno broadcast to terminate the |oading of the Microsoft Task Switcher
supplied by DOS 5.

During an AR-BIND procedure the ARDD should return afar pointer to acall slot within its own code
segment. A call slot isa portion of the ARDD code that is responsible for passing packets to the entity
with which the bind took place. Extreme care must be used when assigning call slots. This code must

be either duplicated a number of timesto allow for multiple call slots or code must be added to manage
re-entrance.

Requests may be passed to the ARDD using one or more of the following procedures:

Note: Address Resolution (AR) messages are described in the section, ARDD Command Set

Description, in this document.

a Format an AR message and passit to the ARDD using Interrupt 21h(33), Function 44h(68),
Subfunction 03h(03) (* Send Control Datato a Character Device”).

b. Format an AR message and create a device driver request packet. Place far callsto the
ARDD *“strategy” and “interrupt” routines directly (refer to the section titled “Making
Device Driver Calls Directly”, in thisdocument). Thisaddress must have been previously
acquired using the “ Get Header Address” General IOCTL (refer to the section titled “ Get
Header Address’ in “1OCTL Facilities’, in this document.)

c. Format an AR message. Use INT 2Fh facilitiesto pass the information to the ARDD (refer
tothesectiontitled “INT 2Fh Facilities’, in thisdocument, for further details) (refer toitem
12 for INT 2Fh facilities supported by the ARDD).

Note: INT 2Fh facilities are available only to an AE implemented as adevice driver. An AE

10.

11.

12.

implemented as a Terminate but Stay Resident (TSR) application which utilizes these services
will not be considered compliant with this specification.

The ARDD must not modify the value returned in the AX register by the far entity except where
specified.

Since DOS does not alow for a device driver to pass user defined return/status codes to an application,
the ARDD should keep alocal copy of the last return/status value to allow for an application to retrieve
the REAL return/status code using the “ Get Return/Status’ IOCTL (refer to the section titled “ Get
Return/Status’ in “IOCTL Facilities’; in this document.)

The ARDD will monitor the INT 2Fh chain for intra-device messages from AEs (refer to Appendix [;
Hooking the INT 2Fh Vector). The values and parameters for these commands are documented in the
section, INT 2Fh Facilities, in thisdocument. Messages passed using INT 2Fh facilitieswill contain the
AEMultiplex ID (AEM) inthe AH register (refer to item 6 for information on command line parameters).



13. Since all M/C and UP calls go through the ARDD it becomes the responsibility of the ARDD to call the
far entity with the buffer'saddress. Information may be passed to abound entity viaone of thefollowing
methods (refer to device functional flowchart #1):

a. If theentity registered with a callback address (Callback_Type=0), then information will
be passed on the STACK by acall to the entity's callback function.

The STACK frame for ARDD or Management/Control callbacks will be formatted in the
following manner (refer to AR-BIND_Mc request messages for more information on bind
procedures and their parameters):

PUSH WORD MsgSi ze ;  Bytes in nessage
PUSH WORD seg MsgPtr ;. Segnent of nmessage
PUSH WORD of fset MsgPtr ; Ofset of nessage

The STACK frame for a UP callback will be formatted in the following manner (refer to
AR-BIND_Up request messages for more information on bind procedures and their

parameters):
PUSH WORD Dat aSi ze ; Bytes in data buffer
PUSH WORD seg DataPtr ; Segnent of actual buffer
PUSH WORD of fset DataPtr ;  OfFfset of actual buffer
PUSH WORD ClSize ; Bytes in control nessage
PUSH WORD seg CtlPtr ; Segnent of control nessage
PUSH WORD of fset CtlPtr ; OFfset of control nessage

b. If anentity registered with asoftware interrupt vector (Callback_Type=1), then the ARDD
will execute a software interrupt to the vector supplied in the bind with DS:SI pointing to
the segment and offset of abuffer frame. If the software vector is2Fh, the ARDD will place
the INT2F_AX value, passed during the bind, in AX prior to execution of the interrupt.

The buffer frame for ARDD or Management/Control messages will be formatted in the
following manner (refer to AR-BIND_Mc request messages for more information on bind
procedures and their parameters):

WORD of fset MsgPtr ; Ofset of nessage
WORD seg MsgPtr ; Segnent of nessage
WORD MsgSi ze ; Bytes in nessage

The buffer frame for a UP message will be formatted in the following manner (refer to AR-
BIND_Up request messages for more information on bind procedures and their

parameters):
WORD of fset CtlPtr ; OFfset of control nessage
WORD seg CtlPtr ; Segnent of control nmessage
WORD ClSize ; Bytes in control nessage
WORD of fset DataPtr ; OFfset of actual buffer
WORD seg DataPtr ; Segnent of actual buffer
WORD Dat aSi ze ; Bytes in data buffer

c. Oncethe ARDD has delivered the message to the proper entity it should return to the
original caller with AX and the carry flag unmodified.

14. The ARDD will respond to the Generic IOCTL, Category=0Ah (ARDD), minor code=80h (“ Get Device
Information”) with amajor value of 0x20 and minor value of 00h. All other information returned must
befilled in by the ARDD (refer to the section titled “ Get Device Information” in “1OCTL Facilities’, in
this document).

15. The ARDD will respond to the Generic IOCTL, Category=0Ah (ARDD), minor code=81h (“ Get Return/
Status’) with the value last returned in the “status” field (bits 0-7) of the DOS device driver request
header (refer to the section titled “Get Return/Status” in “IOCTL Facilities’, in this document.)



16. The ARDD may receivea“close” to an accesspoint at any time. If a"close” isreceived, the ARDD must
check for the existence of any active binds. If active binds exist, the ARDD must send an AR-
UNBIND_ALL indication message to each entity bound with the closed entity. The ARDD must also
block any further calls to the closed entity by returning a“Not Bound” error to the caller with the carry
flag set. If the ARDD hasany active bind registrationsto the closed entry point, then theregistration flag
should also becleared. The ARDD isresponsiblefor closing all active User Plane callback slots assigned
to the closed entity. The ARDD will also reset the Mc callback as defined below:

a. If theremaining entity isan AE, then the ARDD will reset the entity to a status of
“registered”. An AE will not have to re-register following a PE disconnect.

b. If theremaining entity is aPE, then the ARDD will clear al register/bind status and will
return the entity to an idle state (unbound/unregistered). A PE must re-register following
an AE disconnect.

3.4. Microsoft Windows Standard M ode Support

This sections defines facilities that must be supported by the ARDD to ensure compatibility with Microsoft Windows
operating in Standard Mode. These services are in addition to the services defined in the section, ARDD Basic
Service, in this document.

Microsoft Windows operating in Standard Mode is not supported at this time.

3.5. Microsoft Windows Enhanced M ode Support

This sections defines facilities that must be supported by the ARDD to ensure compatibility with Microsoft Windows
operating in Enhanced Mode. These services are in addition to the services defined in the section “ARDD Basic
Service” in this document.

Note:  Parameters between “[]” are optional parameters.

1. Command syntax for loading the ARDD will be asfollows:
DEVICE=<driver name> /AEM:xxh /PEM:xxh [/AE:n]
Example:

DEVICE=ASI_ARDD.SYS/AEM:57h /PEM:5Fh /AE:2

The INT 2Fh handle for AE entry point(s) (AEM) will be 57h. The*h” following the“ 7" denotes hexa-
decimal (base 16). If the“h” is omitted the value is assumed to be decimal (base 10).

The INT 2Fh handle for PE entry point(s) (PEM) will be 5Fh. The “h” following the “F” denotes hexa-
decimal (base 16). If the“h” is omitted the value is assumed to be decimal (base 10).

Note: “/AEM” and “/PEM” arerequired parameters. If either of these parameters are omitted, then the
ARDD will return an error and unload itself.

The ARDD will load and initialize two (2) AE entry points using the names “ARDDAEQQ” and “ARD-
DAEO1".

Note: If no“/AE" parameter isincluded, the ARDD will assume the existence of one (1) AE entry
point (“ARDDAEOQQ"). This keepsthe ARDD compatible with the “DOS Access Method” as
described in part 2.

Note: If any parameters areinvalid (i.e., “/AEM:A5" would be in error because an “A” isnot avalid
numeric for base 10), then the ARDD will return an error and unload itself. Likewisea
parameter greater than that supported by the ARDD will cause aload failure (i.e., /AE:nn greater
than that supported by the ARDD device driver).



The ARDD must keep amap of Virtual Machine IDs (VMIDs) which are AS| active. A VM that has
“opened” the ARDD is considered ASI active. Oncethe VM has*closed” the ARDD it isno longer
considered ASI active and may be removed from the map.

The ARDD will hook the“Multiplex Interrupt” (INT 2Fh) in order to allow the ARDD to receive, among
other things, messages from the Microsoft Windows Kernel (refer to “Appendix I, Hooking the INT 2Fh
Vector” and “INT 2Fh Facilities’, for further details). These messages include:

a.  “Enhanced Windows and 286 DOS Extender Initialization” (AX=1605h). Thiscall should
be used to block the loading of the 286 DOS Extender. The ARDD may also createinstance
datafor PE entry point access at thistime. In addition the ARDD will cause the VxD to
load and pass the PEM valueto the VxD (refer to the section titled “ Virtual Device (VD)
Specification”, in this document for further details)

b. “Enhanced Windows Initialization Complete” (AX=1608h). Thisinformsthe ARDD that
Windows Enhanced Mode has completed initialization and is running.

c. “Enhanced Windows Begin Exit” (AX=1609h). Thisis broadcast at the beginning of a
normal Windows exit procedure.

d. “Enhanced Windows and 286 DOS Extender Exit” (AX=1606h). Thisis broadcast prior
to Microsoft Windows returning to DOS.

Once Microsoft Windows is running, the ARDD must use INT 2Fh facilities provided by Microsoft
Windowsto manage PEsthat accessthe ARDD's services (refer to the sectiontitled “INT 2Fh Facilities”,
in this document, for further details).

Commonly used functionsinclude:

a  “Get Current Virtual Machine ID” (AX=1683h). This service may be used by the ARDD
to acquire the currently running VMID.

b. “SwitchVMsand Callback” (AX=1685h). If the above function does not returnthe VMID
with which the ARDD wishes to communicate, then this facility may be used to force the
VMID to become active. Once Windows has activated the requested VMID, afar call will
be made to the callback address supplied in the request by the ARDD.

c. “Begin Critical Section” (AX=1681h). This may be used to lock aVM in memory while
the ARDD deliversthe message. Thisfunction should be used with leniency since no other
task will be allowed to run until the critical section has completed.

d. “End Ciritical Section” (AX=1682h). Thisfunction isused to signal the end of acritical
section. This call must aways be made following a call to “Begin Critical Section”.

Note: If Microsoft Windows is running, the ARDD must verify that the proper VM is available and in
memory.

5.

The ARDD will monitor the INT 2Fh chain for any “Broadcast” (AL=10h) fromaVxD. These messages
will contain the PEM id inthe AH register, as specified initem 1 above, and aVMID inthe BX register.
The CX register will contain avalue which represents the new state of the VM. If the VMID represents
aVM which is ASl active the ARDD should perform one of the following:

a. If thevaluein CX representsVM_NOT_EXECUTEABLE (30h), then the ARDD should
“close” the access point. Proceduresfor closing an access point are described initem 16 of
the section titled “Basic ARDD Services’, in this document.

b. If thevaluein CX represents VM_SUSPEND, then the ARDD should begin interception
of all messages, on al bound planesto the VM. The ARDD will return “Interface
unavailable” to the caller with the carry flag set. The ARDD will also set a“lost_message’
flag.



c. If thevaluein CX represents VM_RESUME (20h) the ARDD should, if the
“lost_message” flag was set (as specified into step b above), call the AR_Callback function
of the VM with an “AR-LOST_MESSAGE”. The ARDD will also discontinue the
interception of messages to the VM.

6. The ARDD isresponsible for the management of each VM instance of a PE entry point. Microsoft
Windows Enhanced Kernel suppliesfacilitiesto assist in this function (refer to the section titled
“Enhanced Windows and 286 Extender Init”, in this document.)

35.1L Virtual Device (VxD) Specification

This section defines the protected mode portion of the ARDD that is responsible for broadcasting messagesto the real
mode ARDD about the status of VMswithin Microsoft Windows. Services provided in this section may only be
utilized by an ARDD which has “ Enhanced Windows’ support as defined in the section titled “ARDD Enhanced
Windows Support”, in this document.

A Microsoft Windows Virtual device driver (VxD) will have the following characteristics:

1. A VxD will beresponsiblefor broadcasting messagesto the ARDD using the INT 2Fh “BROADCAST”
message (refer to the section titled “INT 2Fh Facilities’, in this document for alist of valid message
values). These messages should be broadcast using the PEM value from the ARDD load linein
“config.sys’ (refer to item 1 in the section titled “ARDD Enhanced Windows Support”, in this
document.)

2. TheVxD shall be named “ASIARDD.386".

3. TheVxD will beloaded by the ARDD during Windows Startup. TheVxD shall receive aparameter from
the ARDD which shall contain the PEM value. The VxD will placethisvaluein AH prior to any status
broadcasts.

3.6. DOS Task Switcher Support

This section defines facilities that must be supported by the ARDD to ensure compatibility with the Microsoft DOS
Task Switcher. These services are in addition to the services defined in the section titled “ARDD Basic Service’, in
this document.

The Microsoft Task Switcher is not supported at thistime.

3.7. Other Protected M ode Shells
For further study.
4.0. ARDD M essage For mat

Messages are sent to the ARDD using one of the methods outlined in “Basic ARDD Services, item 13” in the section
titled “ARDD Specifications’, in this document.

ARDD messages are comprised of afixed length part (header) and avariable length part (body). The header contains
one (1) byte which is composed of acommand value (bits 0-5) and aflag field (bits 6-7) (refer to the section titled
“ARDD Command Format”, in this document, for further details). Most ARDD messages require additional bytesin
order to complete their task. The actual number of additional bytes is dependent upon the ARDD command.



4.1. ARDD Command For mat

The ARDD command byte is a combination command value and flag field as described as follows:

Bit(s) Description
0-5 Command Value
6
7 Buffer control
4.2. ARDD Command Set
Valid ARDD commands are:
AR-BIND_Mc confirmation 0x01
AR-BIND_Mc request 0x02
AR-BIND_Up confirmation 0x03
AR-BIND_Up request 0x04
AR-UNBIND_Mc indication 0x05
AR-UNBIND_Mc request 0x06
AR-UNBIND_Up indication 0x07
AR-UNBIND_Up request 0x08
AR-UNBIND_ALL indication 0x09

AR-LOST_MESSAGE indication ~ 0x10

/I see command set below
/I reserved
/I if set during a bind, messages passed over that plane will contain a

pointer which must remain valid until aresponseis received (this
will be utilized in future enhancements to this document).

/I Mc=Management/control

/I Up=User plane

Note: There are no “response” primitivesin the “ Enhanced DOS/Protected Mode Shell Access Method”. Future
enhancements to this document may contain “response” primitives.

5.0. ARDD Command Set Description

This section contains descriptions of the messages associated with each ARDD command. When reading this

chapter, the following criteria apply:

»  Each section title contains the Command Name in bold letters followed by an indicator which denotes
the direction of the command (request, confirmation, indication or response).

Note: There are no “response” primitives in the “ Enhanced DOS/Protected Mode Shell Access
Method”. The explanation of the primitive was listed as a general definition for the ASI. Future
enhancements to this document may contain “response” primitives.

» Thetitle endswith the actua hex value of the command (bits 0-5).

» Following each title isabrief description of the command and alisting of the required parameters.

» Return values will be placed in the AX register unless otherwise specified.

10



5.1. ARDD Request M essages

“Request” messages are formed by the AE or PE and sent to the ARDD using one of the supported transfer
mechanisms. “Request” messages are used by the AE or PE to send command requests to the ARDD.

5.1.1. AR-BIND_Mc request [0x02]

Instructs the ARDD to bind its management plane with that of a specific entity.

The bind instruction may use one of the following definitions. The actua use depends on the callback facility that a
particular entity wishesto use for communications. Optional_1 refersto an AR callback likewise Optional_2 refersto
the Mc callback.

Byte Description

2-3 Bind_Id /I seedescription below
4-5 unassigned

6-9 Optional_1 /I seedescription below
10-13 Optional_2 /I seedescription below
14 Callback_Type /I seedescription below
15-18 Optional_Extension_1 /I seedescription below
19-22 Optional_Extension_2 /I seedescription below

The“Bind_Id” field has the following meaning:

e AnAE cdling the bind procedure uses this field to identify itself from other AEsin the system. This
value is supplied to the AE at configure time and must be unique. The ARDD will return an error if
multiple AEs attempt to register using the same “Bind_Id".

Note: In order to remain compatible with the DOS Access Method, a“Bind_Id” value of zero (0) may be
used by any number of AE(s) without causing an error.

» ThePE usesthisfield to request abind to a specific AE. If thisvaueis“0", the ARDD will complete
the bind to the first (1st) available AE. If an AE is not registered, the ARDD will register the PE.

Note: The PE may have many bind requests outstanding. The total number of binds and bind requests may
not exceed the number of AE entry points supported by the ARDD. If the PE attempts to make a bind
request which lies outside the above parameters, the ARDD should return a 0x00A4 (Active Register/Bind)
error.

Note:  Any number of PE bind requests may carry a“Bind_Id” value of zero (0).

Callback_Typeisanibble-encoded field defined as follows:

bits 0-3 AR Callback type
bits 4-7 Mc Callback type

Refer to the following sections to define callback facilities. Byte values represent relative offset within the
Optional_1 or Optiona_2 field.

if Callback_Type=0 or is not present:

1-2 Offset Address
34 Segment Address

if Callback_Type=1:

1 Software IRQ /I IRQ to usefor callback
2 reserved
34 INT2F_AX /I AXfor INT 2Fh callback if software IRQ=2Fh

11



Note:  Optiona_Extension_1 and Optional_Extension_2 are reserved for future enhancements.

Return:

Note: If the carry flag is set an error may have occurred. If Interrupt 21h(33), Function 44h(68), Subfunction
03h(03) (“Send Control Datato a Character Device") was used to send this message then the valuein AX
will contain a DOS mapped error value. This value may not represent the ASI error value and should be
ignored. To retrieve the actual error/status value the AE or PE must use the “ Get Return/Status’ |OCTL
(refer to the section “ Get Return/Status’, in“1OCTL”, in this document). The value returned in the buffer by
the IOCTL may be one of the following:

0x0000 OK /I operation successful

0x0081 Message length error /I invalid message length

0x0082 Invalid message pointer /I invalid message pointer

0x0083 Out of Memory /I insufficient memory to complete request

O0x00A1 Registered /I other entity not present

0x00A2 Invalid_Reference /I invalid Reference_Id

0x00A3 Reference_not_unique /I reregisteredid

0x00A4 Active Register/Bind /I id aready bound

0x00A6 Missing or Illegal element /I oneor more field(s) are missing or contain invalid element values
5.1.2. AR-BIND_Up request [0x04]

Instructs the ARDD to bind its user plane with that of a specific entity.

The bind instruction may use one of the following definitions. The actual use depends on the callback facility a
particular entity wishesto use for communications.

Byte Description

2-5 Reference_Id /I AEI-PEI pair

6-9 Optional /I seedescription below
10 Callback_Type /I seedescription below
11-14 Optional_Extension /I seedescription below

Note: The Reference_Id containsacopy of the four octets (AEI/PEI), 2 through 5, as defined in Part 1, Commands
chapter, Message Format section.

Callback_Typeisanibble-encoded field defined as follows:

bits 0-3 AR Callback type
bits 4-7 Mc Callback type

Refer to the following sections to define callback facilities. Byte values represent relative offset within the Optional
field.

if Callback_Type=0 or is not present:

1-2 Offset Address
34 Segment Address
if Callback_Type=1:
1 Software IRQ /I IRQto usefor callback
2 reserved
34 INT2F_AX /I AX for INT 2Fh callback if software IRQ=2Fh

Note:  The Optional_Extension field is reserved for future enhancements.

Return:

Note: If the carry flag is set, an error may have occurred. If Interrupt 21h(33), Function 44h(68), Subfunction
03h(03) (“Send Control Data to a Character Device”) was used to send this message, then the value in AX
will contain a DOS mapped error value. This value may not represent the AS| error value and should be

12



ignored. To retrieve the actual error/status value the AE or PE must use the “ Get Return/Status’ 10CTL
(refer to the section on “Get Return/Status”, in“IOCTL”, in thisdocument). The value returned in the buffer
by the IOCTL may be one of the following:

0x0000 OK /I operation successful

0x0081 Message length error /I invalid message length

0x0082 Invalid message pointer /I invalid message pointer

0x0083 Out of Memory /I insufficient memory to complete request

O0x00A1 Registered /I other entity not present

0x00A2 Invalid_Reference /I invalid Reference Id

O0x00A3 Reference_not_unique /I reregisteredid

0x00A4 Active Register/Bind /I id aready bound

O0x00A5 Not Bound /I invalid unbind request

0x00A6 Missing or Illega element /I oneor more field(s) are missing or contain invalid element values

Ox00A7 No system resources /I acdl-dotisunavailable for this request
5.1.3. AR-UNBIND_Mc request [0x06]

Instructs the ARDD to remove its management plane entry from the appropriate list and notify the entity to which it
was bound that it is no longer available. This message should only be sent by the PE.

Byte Description
2-3 Bind_ld /I Bind_ld valuereturned by the AR-BIND_Mc confirmation
4-5 unassigned

Return:

Note: If the carry flag is set, an error may have occurred. If Interrupt 21h(33), Function 44h(68), Subfunction
03h(03) (“Send Control Datato a Character Device”) was used to send this message, then the value in AX
will contain a DOS mapped error value. This value may not represent the AS| error value and should be
ignored. To retrieve the actual error/status value the AE or PE must use the “Get Return/Status’ IOCTL
(refer to the section on “ Get Return/Status’, in “1OCTL”, in thisdocument). The value returned in the buffer
by the IOCTL may be one of the following:

0x00 OK /I operation successful

0x81 Message length error /I invalid message length

0x82 Invalid message pointer /I invalid message pointer

0x83 Out of Memory /I insufficient memory to complete request

OxA2 Invalid_Reference /I invalid Bind_Id

OxA5 Not Bound /I invalid unbind request

OxA6 Missing or Illegal element /I oneor more field(s) are missing or contain invalid element values
5.1.4. AR-UNBIND_Up request [0x08]

Instructs the ARDD to remove its user plane entries from the appropriate list and notify the entity to which it was
bound that it is no longer available.

Byte Description
2-5 Reference_|d /I set=AEIl/PEI pair

Note: The Reference Id contains acopy of the four octets (AEI/PEI), 2 through 5, as defined in Part 1, Commands
chapter, Message Format section.

Return:

Note: If the carry flag is set, an error may have occurred. If Interrupt 21h(33), Function 44h(68), Subfunction
03h(03) (“Send Control Data to a Character Device”) was used to send this message, then the value in AX
will contain aDOS mapped error value. This value may not represent the ASI error value and should be
ignored. To retrieve the actual error/status value the AE or PE must use the “Get Return/Status’ |OCTL

13



(refer to the section, IOCTL; Get Return/Status, in this document). The value returned in the buffer by the
IOCTL may be one of the following:

0x0000 OK /I operation successful

0x0081 Message length error /I invalid message length

0x0082 Invalid message pointer /I invalid message pointer

0x0083 Out of Memory /I insufficient memory to complete request

0x00A2 Invalid_Reference /I invalid Reference_Id

0x00AS5 Not Bound /I invalid unbind request

0x00A6 Missing or Illegal element /I oneor more field(s) are missing or contain invalid element values
5.2. ARDD Confirmation M essages

“Confirmation” messages are sent in response to a“request”. This messageis sent by the ARDD to the AE or PE
which sent the “request” using the AR_Callback method described during the bind procedure.

521 AR-BIND_Mc confirmation [0x01]

Provides the called entity with an acknowledgment that its management plane has been bound with the entity for
which it registered.

Byte Description

2-3 Bind_Id /I theid of the bound AE

4-5 unassigned

6-9 Mc_Callback /I far address of M/C callback slot (offset, segment)

Note: Refer tothe AR_BIND_Mc request for an explanation of the Bind_lId field.

Note:  TheBind_Id has no meaning to an AE which receives this message. An AE should ignore thisfield.

Return:
0x0000 OK /I operation successful
5.2.2. AR-BIND_Up confirmation [0x03]

Provides the called entity with an acknowledgment that its user plane has been bound with the entity for which it
registered.

Byte Description
2-5 Reference_Id /I set=AEI/PEI pair
6-9 Up_Callback /I far address of user plane callback slot (offset, segment)

Note: The Reference Id contains acopy of the four octets (AEI/PEI), 2 through 5, as defined in Part 1, Commands
chapter, Message Format section.

Return:

0x0000 OK /I operation successful

5.3. ARDD Indication M essages

“Indication” messages are sent to the AE or PE by the ARDD, using the AR_Callback method described during the
bind procedure. These messages are used to inform the AE or PE of an unsolicited event.

14



5.3.1. AR-UNBIND_M _c indication [0x05]

Provides the called entity with an indication that the entity with which its management plane was bound is no longer
available.

Byte Description
2-3 Bind_Id /I Bind_Id valuereturned by the AR-BIND_Mc confirmation
45 unassigned
Return:
0x0000 OK /I operation successful
532 AR-UNBIND_Up indication [0x07]
Providesthe called entity with an indication that the entity with which its user plane was bound is no longer available.
Byte Description
2-5 Reference_|d /I set=AEIl/PEI pair

Note: The Reference_Id contains a copy of the four octets (AEI/PEI), 2 through 5, as defined in Part 1, Commands
chapter, Message Format section.

Return:
0x0000 OK /I operation successful
5.3.3. AR-UNBIND_ALL indication [0x09]

Provides the called entity with an indication that the entity, with which its management and/or user planes were
bound, is no longer available.

Byte Description
2-3 Bind_Id /I theid of the bound AE
4-5 unassigned

Note:  TheBind_ld has no meaning to an AE which receives this message. An AE should ignorethisfield.

Return:
0x0000 OK /I operation successful
5.34. AR-LOST_MESSAGE indication [0x10]

Provides the called entity with an indication that the one or more messages were lost while it was inactive.
Thereis no further information supplied with this message.

Return:
0x0000 OK /I operation successful

54. ARDD Response M essages

“Response” messages are sent in response to an “Indication”. These messages are sent by the AE or PE to the
ARDD using one of the supported transfer mechanisms.

Note:  Thereareno “response” primitivesin the “ Enhanced DOS/Protected Mode Shell Access Method”. The
explanation of the primitive was listed as a general definition for the ASI. Future enhancements to this
document may contain “response” primitives.

15



6.0. |OCTL Facilities

This section provides detailed information on the use of the “General IOCTL" facilities supported by the ARDD.
The Major code for all General IOCTLs must be Ox0A.

6.1. Get Device Information [Minor Code=80h]

The " Get Device Information” IOCTL may be used by the AE or PE to acquire information on the support level and
parameters of a particular implementation of the ARDD. Theinformation shall be placed in a buffer passed to the
ARDD during the General IOCTL call.

On entry the first word in the buffer should be set to the length of the buffer receiving the information. The ARDD
will place as many bytes of information asiit can, into the buffer, given the size of the buffer. The ARDD will not
provide partial information. A returned structure element will not be truncated.

On Exit the buffer will have been populated by the ARDD with as much information asit can fit into the buffer given.
Thisincludes:

* ARDD major and minor version number.

*  Vendor string.

»  Vendor major and minor version number.

» AE device count (bound and unbound).

* UPcdlback dots.
Note:  Refer to Appendix L; Get Device Information Structure for the byte order of the returned buffer.

6.2. Get Return/Status [Minor Code=81h]

The“Get Return/Status’ |OCTL may be used by the AE or PE to get the return/status value of the last ARDD
command request. The buffer supplied by the caller of this facility will be populated with the last value returned in
the status field of the DOS device driver request packet. The buffer should be large enough to hold a 2 byte (1 word)
return code. The value returned shall be comprised of a zero byte followed by the value of the lower 8 bits of the
status field.

6.3. Get Header Address[Minor Code=82h]

The “Get Header Address’ IOCTL may be used to gain access to the ARDD using direct callsto the ARDD's
“strategy” and “interrupt” routines. These routines are defined by DOS and are used to pass request packetsto a
devicedriver. The buffer returned by this facility will be populated with the far address of the ARDD header. The
buffer should be large enough to hold a segment and offset value (4 bytes).

Note:  Returned valueis comprised of an offset in bytes 1-2 followed by a segment address in bytes 3-4.

Once an entity has acquired the ARDD header address it may format a device driver packet (refer to the section titled
“Building a Device Driver Request Packet”, in this document), and passit to the ARDD in the same manner as DOS
would. That isloading ES:BX with the location of the request packet, calling the ARDD's “ strategy” routine then
calling the ARDD's “interrupt” routine. Upon return the lower byte of the status word will contain an ASI defined
return/status value.

Note:  The segment address of the “strategy” and “interrupt” routines are the same as the segment address of the
device header.

16



7.0. INT 2Fh Facilities

This section details INT 2Fh facilities used by the ARDD and PM shells.
Thisincludes service used by:

» ARDD (For AE entity access)

» ARDD (For PE entity access)

*  Microsoft Windows

«  MSDOS Task Switcher (DOSSHELL.EXE)

e Other Protected Mode Shells (for further study)

7.1. ARDD
The following sections detail INT 2Fh facilities supported by an ARDD implementation.

7.2. ARDD INT 2Fh Facilities- AE Access

This section details INT 2Fh facilities used by the ARDD for inter-device communications between an AE and the
ARDD. The AH register should be loaded with the value passed on the command line to the ARDD (AEM) (refer to
item 6 of the section titled “ARDD Specifications’, in this document, for further details)

7.2.1. “Query Support” [AL=00h]

ThisisaDOS defined command passed to the INT 2Fh chain to query whether aINT 2Fh handler has been installed
for thisid. The ARDD handler routine should return with AL=0FFh.

7.2.2. “Open” [AL=10h]

This command will open the ARDD for access. This call isintended for use by other device drivers (i.e., an AE
implemented as adevice). If thiscall is successful, the ARDD should block any subsequent DOS open requests.

Onentry:
DS:SI = address of buffer containing avalid, ASI filename, formatted asa NULL terminated ASCI| string.
Return:
If carry flag clear:
AX=handle of open device (ARDD generated)
If carry flag set, AX may contain one of the following errors:
0002h file not found
0005h access denied
7.2.3. “Close” [AL=20h]

Closesthe ARDD and makes it available for access by other entities. Once closed the ARDD may permit DOS open
requests.

Onentry:

BX =file handleto close
Return:

17



If carry flag clear:
function completed successfully
If carry flag set, AX may contain the following error:
0006h invalid file handle

7.2.4. “IOCTL” [AL=30n]
The caller may use thisto send requests to the ARDD.

On entry:

BX =filehandle
DS:SI = address of message buffer
CX = number of bytesin buffer

Return:
If carry flag clear:
AX=number of bytes accepted by ARDD

If carry flag set, AX may contain the following error:

0005h access denied

0006h invalid file handle

000dh invalid data
7.2.5. “GENIOCTL” [AL=40h]
The caller may use thisto send command/requests to the ARDD.
Onentry:

BX =file handle

DS:S| = address of message buffer
CH = major code
CL = minor code

Return:
If carry flag clear:
function completed successfully
If carry flag set, AX may contain the following error:
0005h access denied
0006h invalid file handle
000dh invalid data
7.3. ARDD INT 2Fh Facilities - PE Access

This section details INT 2Fh facilities used by a VXD to pass information about various VM activities to the ARDD.
Thisfacility is most commonly used to inform the ARDD about the termination of a PE. Thiswill allow the ARDD
to post AR-UNBIND_ALL indicationsto any AEswith which the PE had a connection. The AH register should be
loaded with the value passed on the command line to the ARDD (PEM) (refer to item 1 of the section titled
“Microsoft Windows Enhanced Mode Support” in “ARDD Specifications’, in this document).

18



7.3.1. “Query Support” [AL=00h]

Thisis a DOS-defined command passed to the INT 2Fh chain to query whether aINT 2Fh handler has been installed
for thisid. The ARDD handler routine should return with AL=0FFh.

7.3.2. “BROADCAST” [AL=10h]
Thiswill be used by a VxD to send general broadcast messages to the ARDD pertaining to the destruction of VMs.
Onentry:

BX =VMID

CX = VM state (see table below)

VM state may be one of the following:

VM_SUSPEND 10h

VM_RESUME 20h

VM_NOT_EXECUTEABLE 30h
Return:

A broadcast may not be returned in error.
7.3.3. “DEBUG” [AX=0FFFFh]

If the VxD is built with debugging enabled, then a broadcast will be sent with AX=0FFFFH during the real mode
initialization routine.

On entry:

Registers set with values passed the Real-M ode-Init routine by Microsoft Windows (refer to the “Microsoft Windows
Device Development Kit” for more information).

BX =flags bit 0: device previously loaded (in “system.ini”)
bit 1: duplicate device id from INT 2Fh device list
bit 2: device loaded by an INT 2Fh service
EDX = value placed in the reference DWORD of the Startup Structure (PEM).
S| = environment segment passed to DOS loader
DIl = VMM version number (passed to init codein AX)
CS=DS = ES = segment of loaded code and data.

Return:

A broadcast may not be returned in error.

7.4. Microsoft Windows Enhanced M ode Shell

This section details INT 2Fh facilities used by Microsoft Windows.

Note:  Refer to the “Microsoft Windows Device Development Kit Virtual Device Adaptation Guide Appendix D”
for further information on these and other INT 2Fh facilities made available by Microsoft Windows for use
by real mode device drivers.

74.1. Call-In Service

A call-in serviceis a service available to the ARDD to communicate with the Microsoft Windows Enhanced Kernel.

19



7.4.1.1. Enhanced Windows I nstallation Check [AX=1600h]

<FOR FURTHER STUDY >
7.4.1.2. Release Current VM's Timeslice [AX=1680h]
<FOR FURTHER STUDY >
7.4.1.3. Begin Critical Section [AX=1681h]
<FOR FURTHER STUDY >
7.4.14. End Critical Section [AX=1682h]
<FOR FURTHER STUDY >
7.4.1.5. Get Current VMID [AX=1683h]
<FOR FURTHER STUDY >
7.4.1.6. Switch VM s and Callback [AX=1685h]
<FOR FURTHER STUDY >
7.4.2. Call-Out Service

A call-out serviceis a service which the Microsoft Windows Enhanced Kernel usesto pass information to the ARDD.

7.4.2.1. Enhance Windows and 286 Extender Init [AX=1605h]
<FOR FURTHER STUDY>

7.4.2.2. Enhance Windows and 286 Extender Exit [AX=1606h]
<FOR FURTHER STUDY>

7.4.2.3. Enhance Windows I nit Complete [AX=1608h]
<FOR FURTHER STUDY>

7.4.24. Enhance Windows Begin Exit [AX=1609h]
<FOR FURTHER STUDY>

7.5. Microsoft Windows Standard M ode Shell

This section details INT 2Fh facilities used by Microsoft Windows when running in standard mode.
<FOR FURTHER STUDY>

7.6. MS-DOS Task Switcher (DOSSHEL L .EXE)

This section details INT 2Fh facilities used by the MS-DOS Task Switcher.
<FOR FURTHER STUDY>

20



8.0. Callback Function Definitions

This ASI access method defines three types of callback routines:

ARMF ARDD Management Function
M/C Management/Control plane
uUP User Plane

These callback routines provide for the asynchronous transfer across the interface in one direction. The exception is
the ARDD's ARMF callback which is used by the ARDD to provide indications and confirmations to both the AE and
PE.

This section provides the calling sequences for the various callback functions. All of the callbacks provide the same
return codes as defined in Appendix A.

If successful, the carry flag will be cleared and the AX register will be set to 0. If thetransfer fails, the carry flag will
be set and AX will contain an error code (refer to Appendix A).

Note: The callback procedureis responsible for preserving al registers other than AX.

Note: The caler isresponsible for maintaining stack integrity.

8.1. AR Management Function Callback Definition

The AR Management Function (ARMF) callback transfers the thread of execution and the message from the ARDD
to the called entity. The following calling procedure will be used:

PUSH WORD MsgSi ze ; Bytes in message

PUSH WORD seg MsgPtr ; Segnent of nmessage (ARDD formatted buffer -- see
the section, ARDD Conmand Set Descri ption,
section, in this docunent)

PUSH WORD of fset MsgPtr ; OFfset of nessage.
CALL AR _Cal | back
8.2. Management/Control Plane Callback Definition

The Management/Control Plane callback transfers the thread of execution and the message from the calling entity to
the called entity (i.e.,, PE -> AE or AE -> PE). The following calling procedure will be used.

PUSH WORD MsgSi ze ; Bytes in nessage
PUSH WORD seg MsgPtr ; Segnent nessage (ASlI fornatted buffer -- see
Comrand section in Part 1)
PUSH WORD of fset MsgPtr ; Offset of nessage
CALL Mc_Cal | back
8.3. User Plane Callback Definition

The User Plane callback transfers the thread of execution and the message from the calling entity to the called entity
(i.e., PE->AE or AE-> PE). Thefollowing calling procedure will be used.

PUSH WORD Dat aSi ze ; Bytes in data buffer
PUSH WORD seg DataPtr ; Segnent of data buffer (protocol specific)
PUSH WORD of fset DataPtr ; Offset of data buffer (protocol specific)

21



PUSH WORD CtlSize ; Bytes in control buffer

PUSH WORD seg Il Ptr ; Segnent of control buffer (protocol specific)
PUSH WORD of fset CtIPtr ; Ofset of control buffer (protocol specific)
CALL Up_Cal | back

Note:  The Control Message may not be required for most data transfers. The Control Message should be used
when a protocol requires the passing of control information to upper layers which are synchronized with a
data message. When a control message is not present, the CtlSize should be set to zero and CtlPtr set to
NULL (0). CtlSize being set to zero will inform the receiving entity to ignore CtlPtr. When a data message
is not present, the DataSize should be set to zero and DataPtr set to NULL (0). DataSize being set to zero
will inform the receiving entity to ignore DataPtr.

9.0. Registration and Binding Process

To provide compatibility with the rest of the ASI, the ARDD binding procedure is asynchronous. |n order to provide
this asynchronous operation, the request and confirm operations are non-symmetrical. The request operation is
carried out using one of the transfer mechanisms supported in this specification.

These include:
* Interrupt 21h(33), Function 44h(68), Subfunction 03h(03) (“Send Control Datato a Character Device")
» Far calstothe ARDD's “strategy” and “interrupt” routines
*  Multiplex Interrupt (INT 2Fh)

The calling program must open the device driver prior to performing any function calls. The confirm operation is
carried out when the ARDD posts a bind confirmation to the AR Management Function (ARMF) of the appropriate
entity using the method of access supplied during the bind request.

9.1. Registration and Binding Using IOCTLs

The ARDD is atwo-sided device (AE and PE entry points). Thisalowsthe ARDD to easily differentiate between
entity's types which need to be bound since each entity will always call upon a specific entry point. When abind
request arrives at each entry point carrying the same ID, the ARDD natifies both entities of the resulting match. Also,
by having this two -sided mechanism which always remains open (while the entity is active), the ARDD is capable of
detecting when a process goes away prematurely and can send AR-UNBIND_ALL indicationsto all entities which
have an active bind with the entity that went away. This provides for graceful cleanups.

The following scenarios represent typical load and address resolution procedures. 1t isassumed that all entities are
well-behaved relative to their environment and follow proper procedural practices. This scenario makes the
assumption that the AE was loaded first. With this assumption, the sequence of these events must be observed.
These scenarios aso assume no errors, either logical or physical, occur.

While this scenario istypical, it in no way impliesthat it is the only valid sequence which can be used.
1. The Address Resolution Device Driver (ARDD) loads and initializes.

2. TheASl Entity (AE) loads. It then opensthe ARDD using the name“ARDDAENN". Using the device
handle returned on the open, the AE formats an AR-BIND_Mc request and issuesit to the ARDD using
one of the supported transfer mechanisms (refer to the section titled “Basic ARDD Specifications’, in
this document for further details) (Bind_Id=0x00000000). This request containsthe AE's M/C plane
function address and the AE's Address Resolution Management Function (ARMF) address.

Note: Do not close the ARDD.

3. The ARDD registersthe M/C and ARMF callback routines and returns a value of OxA1 (Registered) in
the status field of the device driver request packet. The error (bit 15) and done (bit 8) are also set.

22



Note: If Interrupt 21h(33), Function 44h(68), Subfunction 03h(03) (“ Send Control Datato a Character

Device”), was used to send the AR-BIND_Mc request to the ARDD, then the AE will have the
carry flag set. The AX register will contain a DOS mapped error value. This value may not
represent the AS| error value and should beignored. To acquirethe ASI error value the AE must
placea” General IOCTL” (Interrupt 21h(33), Function 44h(68), Subfunction 0Ch(12)) call with a
category of 0Ah(10) (ARDD), minor code of 81h(129) (“Get ARDD Status/Return”), and a
pointer to aword to receive the actual status/error. The value stored in this location should be
0x00A1 (Registered).

The Program Entity loads. It then opensthe ARDD using the name “ARDDPEQQ”. Using the device
handle returned on the open, the program entity formats an AR-BIND_Mc request and issues it to the
ARDD using one of the supported transfer mechanisms(refer to the section, Basic ARDD Specifications,
in this document) (Bind_|d=0x00000000). This request contains the PE's M/C plane function address
and the PE's Address Resolution Management Function (ARMF) address.

Note: If Interrupt 21h(33), Function 44h(68), Subfunction 03h(03) (“ Send Control Datato a Character

Device") was used to send the AR-BIND_Mc request to the ARDD, the PE will have the carry
flag set. The AX register will contain a DOS mapped error value. This value may not represent
the ASI error value and should be ignored. To acquire the ASI error value the AE must place a
“General IOCTL" call (Interrupt 21h(33), Function 44h(68), Subfunction 0Ch(12)), with a
category of 0Ah(10) (ARDD), minor code of 0x81 (“Get ARDD Status/Return”), and apointer to
aword to receive the actual status/error. The value stored in thislocation should be 0xO0A1
(Registered).

Note: Steps 5 through 8 occur while the ARDD is servicing the interrupt routine which resulted from

8.

the IOCTL call in step 4.

The ARDD registers the M/C and ARMF addresses of the PE.

The ARDD callsthe PE's ARMF with an AR-BIND_Mc confirmation, passing the AE's M/C function
address. The callback returns O to the ARDD.

The ARDD callsthe AE's ARMF with an AR-BIND_Mc confirmation, passing the PE's M/C function
address. The callback returns O to the ARDD.

The ARDD returns O to the PE (this completes the call sequence from step 4).

Note: At this point the PE and AE are bound. The PE can initiate a call to the AE's management/

10.
11

12.

13.

14.

15.

control plane function. Viathis function, configuration of the ASl Entity can take place (see
Figure 3 in this Document).

The PE callsthe ARDD with an AR-BIND_Up request, passing the user plane and control function (far)
addresses (Reference_|d=0x00000005). The ARDD returns OxA1 to the PE.

The Program Entity callsthe AE control plane function with an Nb-CONNECT request (PEI=0x0005).

The AE callsthe ARDD withan AR-BIND_Up request, passing the user plane, and control function (far)
addresses (Reference_|d=0x00060005).

The ARDD callsthe PE with an AR-BIND_Up confirmation, passing the AE's user plane function (far)
address (Reference_|d=0x00060005).

The ARDD callsthe AE with an AR-BIND_Up confirmation, passing the PE user plane function (far)
address (Reference_|d=0x00060005).

Here, we assume that the appropriate processing goes on in the AE, and an ISDN SETUP is sent to the
network.

The ARDD returns 0x00 to the AE.

23



16. A CONNECT isreceived from the network, which then generates an interrupt to transfer the thread of
execution to the AE's interrupt handler.

17. The AE callsthe PE control plane function with an Nb-CONNECT confirmation (AEI=0x0006). The
PE returns 0x00.

18. The AE issues an interrupt return (IRET) and transfers the thread of execution back to the PE.
Now each of the PE and AE can effect data transfers by calling the other's data and control functions.

The user plane callback function address provides a mechanism for passing data-synchronous user plane control
information. The use of thisinformation will be specific to the peer-to-peer data protocol employed across the ISDN
connection. The format of the user plane control messages are session-dependent as defined in section 6 of part 1.

Note:  The PE's callback routine should only queue messages and return immediately so that the thread of
execution can travel back and forth effectively. Once the AE returns control to the PE, the PE can then
check the messages which have been posted, and act on them accordingly.

9.2. Registration and Binding Using INT 2Fh Facilities
<FOR FURTHER STUDY >

9.3. Registration and Binding Using Direct ARDD Calls
<FOR FURTHER STUDY >

10.0. Making Device Driver Calls Directly

This section details procedures to follow in order to create a device driver request packet. This packet may be sent
directly to the ARDD without utilizing any DOS facilities.

Note: The AE or PE must first open the ARDD before using these facilities.

10.1. Acquiring the Device Header Address
<FOR FURTHER STUDY >
10.2. Building a Device Driver Request Packet

This section details the procedures used by an AE or PE to send device driver request packets directly to the ARDD.
The request packet is comprised of two components: arequest header which isafixed length and a command specific
portion which has alength dependent upon the request command.

To pass a device driver request packet the AE or PE must format a packet in the same manner as DOS does (refer to
the “Microsoft's MS-DOS Programmer's Reference” (Document Number SY 0766b-R50-0691)). Once that packet
has been prepared the entity must follow the procedures in the order below.

1. Placeafar call tothe ARDD's strategy routine with the address of the request header in ES:BX.
2. Placeafar call to the ARDD's interrupt routine.

On return from the call the lower byte of the Status portion of the request header will contain the ASI defined return/
status value from the ARDD.

10.2.1. Request Header
DB ? ; Length in bytes of request header
DB ? ; Not used for character devices
DB ? ; Conmand code field

24



DwW ? ; Status
DB 8 dup (?) ; Reserved

Upon entry, the “ Status” field contains the following:

Bit 15 ; Error bit

Bit 14-10 ; Reserved

Bit9 ; Busy

Bit 8 ; Done

Bit 7-0 ; ASI defined Error code (bit 15 on)

Bit 15, the error bit, is set by the device driver if an error is detected or if aninvalid request is made to the driver. The
low 8 bitsindicate the error code.

Bit 9, the busy bit, is not used by the ARDD in this specification.
Bit 8, the done hit, is set by the device driver when the operation is complete.
Error codes are listed in Appendix A.

10.2.2. Device Driver Command Codes

The " Command Code” field in the request header must contain a valid device driver command.
The following values are valid command codes:

0 INIT

1* MEDIA CHECK (block devices)
2* BUILD BPB (block devices)

3* IOCTL INPUT

4* INPUT (read)

5* NONDESTRUCTIVE INPUT NO WAIT
6* INPUT STATUS

™ INPUT FLUSH

8* OUTPUT (write)

9* OUTPUT WITH VERIFY

10* OUTPUT STATUS

11* OUTPUT FLUSH

12 IOCTL OUTPUT

13 DEVICE OPEN

14 DEVICE CLOSE

15* REMOVABLE MEDIA (block devices)
16* OUTPUT UNTIL BUSY

17-18* Not defined

19 GENERIC IOCTL

20-22* Not defined

23* GET LOGICAL DEVICE

24* SET LOGICAL DEVICE

Unsupported or illegal commands are marked with an “*”. If any of these commands are presented to the ARDD, it
will set the error bit and return the with an error value of Unknown Command (03h).

10.2.2.1. INIT Command [00h]
DB 13 dup (0) ; Request header
DB ? ; Not used by character devices
DD ? ; INPUT: end avail abl e driver nenory
; OUTPUT: end resident code
DD ? ; I NPUT: addr CONFI G SYS device= |ine
; OUTPUT: Not used by character devices
DB ? ; INPUT: first drive nunber
Dw ? ; OUTPUT: error-nmessage flag

This call is made only once, when the device isinstalled. The INIT command comes directly from DOS and should
not be sent to the ARDD directly. The request packet is defined here for reference only.

25



10.2.2.2. |OCTL Output Command [OCh]

DB 13 dup (0) ; Request header

DB ? ; Not used by character devices
DD ? ; INPUT: buffer address

DwW ? ; INPUT: nunber of bytes requested

; OUTPUT: nunber of bytes witten

The transfer address points to the message block being send to the ARDD.
10.2.2.3. Open and Close Command [0Dh and OEh]

DB 13 dup (0) ; Request header

The“open” and “close” requests require no further information. These calls should NOT be made directly to the
ARDD. The“open” command will not be available to an entity since you must have the device open to access the
“Get Header Address’ IOCTL.

Note: The“close” request must NEVER be sent to the ARDD or further access may not be possible.

10.2.2.4. General IOCTL Command [013h]

DB 13 dup (0) ; Request header
DB ? ; I NPUT: device category
DB ; INPUT: m nor code

?
DD ? ; reserved
DD ? ; INPUT: |1 OCTL data address

The transfer address pointsto a control block that is used to communicate with the ARDD. The major and minor
function codes determine the request that is being made.

26



Appendix A. Error codes

A.lL General Error Codes
0x0000 OK /I operation successful
0x0081 Message length error /I invalid message length
0x0082 Invalid message pointer /I invalid message pointer
0x0083 Out of Memory /I insufficient memory to complete request
0x0084 Function not supported /I requested function not supported
0x0085 Interface Busy /I message interface busy, message rejected
0x0086 Interface unavailable /I the PE istemporarily unavailable
0x0087 Lost message /I one or more messages have been lost
A.2. Bind Procedure Error Codes
0x00A1 Registered /I other entity not present
0x00A2 Invalid_Reference /I invalid Reference_Id
O0x00A3 Reference_not_unique /I reregistered id
0x00A4 Active Register/Bind /I id aready bound
O0x00A5 Not Bound /I invalid unbind request
0x00A6 Missing or Illegal element /I one or more fields are missing or contain invalid element values
0x00A7 No system resources /I acal-dotisunavailable for this request
Ox00FF Unknown error /I General failure, no further information is available

27



Appendix B. Future Enhancements

Future enhancements to this document include:

Microsoft Windows GUI Library

Microsoft Windows Protected Mode

MS-DOS Task Switcher (DOSSHEL L.EXE) support
Buffer Management Protocol

Other Protected Mode Shells are for further study

28



Appendix C.

Glossary of Terms

The following terms and definitions are used in this document:

AE
AEM

AH
AL
APl

AR
ARDD

ASl

AX

BP

BX

Byte

Cal

Carry flag

CS
CX
DI

DLL

DOS
DPMI

DS

DX

Entry point
EQU

ES

FAR

Function

The Application Entity refers to the portion of the ASI supplied by the ISDN vendor.

The Application Entity Multiplex 1D is used by the AE device driver to communicate
with the ARDD.

The upper 8 bits of the AX register.
The lower 8 bits of the AX register.

Application Program Interface. A piece of software that extends access to facilities
through a standard library of function calls.

The Address Resolution is alogical software plane that is used to satisfy binding
requests.

The Address Resolution Device Driver is a device driver defined in this document.
Used to manage communications between the AE and PE.

Applications Software Interface. An open standard API for ISDN. See Part 1.
A general-purpose data register.

A base pointer register.

A general-purpose register.

A basic unit of data storage and manipulation. A byteis equivalent to 8 bits.
An assembly language instruction telling the processor to execute a subroutine.

The bit in the flag register that indicates whether the previous operation resulted in a
carry out or borrow into the high-order bit of the resulting byte of word. Also used by
DOSto indicate occurrence of an error.

The code segment register.
A general-purpose register usually used for counting functions.

The destination index register. Paired with ES (ES:DI) to form afar addressto a data
buffer. Primarily used in transfer instructions as afar pointer to the destination buffer.

Dynamic Link Library. Commonly used by operating systemsto allow for common
program functions to be shared among many applications.

Disk Operating System.

DOS Protected Mode Interface. Thisisthe standard interface designed by Microsoft,
Intel and IBM to allow an application running in a DOS machine to have access to
facilities and memory available to a process while operating in the protected mode,

The data segment register.

A general-purpose register.

A character device within the ARDD that is used to provide service to an AE or PE.
An assembly language directive (equate).

The extra segment register.

A far piece of code or datais considered to be within a different segment of memory
than the current segment. Addressing such addresses requires both segment and of fset
pointers.

A self-contained coding segment designed to do a specific task. A functionis
sometimes referred to as a procedure or subroutine.

29



Hexadecimal
IOCTL
ISDN

Linking
M/C

Nibble
Offset

PE
PEM

PM
Protected Mode

Register

Segment
Segment register

Sl

SP
SS
Stack

TSR

VM

VMID
VMM

VxD

A numbering system based on 16 elements. Digits are numbered O through F, as
follows. 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F.

Input/Output Control commands are used to provide control information to devices
from ahigher level of software.

Integrated Services Digital Network, a high-speed digital facility provided by the
telephone network.

The process of resolving external references and address references.

The Management/Control planeisalogica software plane used to pass management
and command.

A nibbleis 1/2 of abyte. Thisusually represents 4 hits.

A distance from a given paragraph boundary in memory. The offset isusually given
as anumber of bytes.

The Program Entity is the program that accesses the AS| at reference point B.

The Program Entity Multiplex ID isused by aVxD to communicateinformation to the
ARDD's PE entry point.

See Protected Mode.

An dternative operating mode of the 80286 and above processors. Protected mode
causes a different use of the segment registers and memory than real mode.

The data-holding area, usually 16 bits in length, used by the processor in performing
operations.

A particular area of memory, 64K in size (1K=1024).

Any of the CPU registers designed to contain asegment address. They includethe CS,
DS, ESand SSregisters.

The source index register. Paired with DS (DS:DI) to form afar addressto a data
buffer. Primarily used in transfer instructions as afar pointer to the source buffer.

The stack pointer register.
The stack segment register.

An area of memory set aside for temporary storage of valuesin acomputing
environment. The stack operatesin aLIFO (Last In First Out) fashion.

Terminate but Stay Resident. Thistype of application may return processing to DOS
viaaspecial DOS function while remaining resident in memory.

A Virtual Machineisamodethat processors, of the class 80386 and higher, may enter
to allow applications written for DOS to function within a protected mode
environment.

Thisisavalue assigned by the VMM in the operating kernel to reference an instance
of aVM. Each running VM isassigned a unique VMID.

The Virtual Machine Manager is the portion of the kernel that is responsible for the
management of VMs.

A Virtual Device driver is used by processors, of the 80386 and higher class, to
virtualize service of areal mode deviceto aVM. This allows management of system
resources in an environment where many applications are running simultaneously.

30



Appendix D. Sample Code -- DOS Functions

The following sections provide examples of the DOS functions used to communicate with the ARDD. For further
information, see Microsoft's MS-DOS Programmer's Reference (Document Number SY 0766b-R50-0691).

D.1. Open Filewith Handle (0x3D)

To open the ARDD, place the device name “ARDDAENN” or “ARDDPEQQ” in a buffer and call DOS with a pointer
to that buffer.

Example:
nov dx, seg Fil eName ; get segnent of buffer
nov ds, dx ; and place it in ds
nov dx, offset FileName ; ds:dx points to device nane
nmov al, 12h ; OPEN_ACCESS_READWRI TE | OPEN_SHARE_DENYREADWRI TE
nov ah, 3Dh ; “Open File with Handl e”
int 21h ; call DOS for service
jc error_handl er ; if carry set, we had an error
nov Handl e, ax ; store handle for |ater
Fi | eNane DB ' ARDDAEQQ' , 0 ; file name buffer
Handl e Dw ? ; handl e returned from open
Return:

If carry flag clear:

AX=Handle of open device.

If carry flag set, AX may contain one of the following errors:

0002h File not found
0003h Path not found
0004h Too many open files
0005h Access Denied
000Ch Invalid Access
D.2. Close File with Handle (Ox3E)
To close the ARDD, provide the “Handle” which was returned from the open.
Example:
nov bx, Handl e ; handl e of device
nov ah, 3Eh ; “Close File with Handl e”
i nt 21h ; call DOS for service
jc error_handl er ; if carry set, we had an error
Handl e D\N ? ; handl e returned from open
Return:

31



If carry flag clear:

function completed successfully

If carry flag set, AX may contain one of the following errors:

0006h Invalid Handle

D.3. Send Control Data to a Character Device (0x4403)

To send commands to the ARDD, use the “Handle” obtained from the open.
Example:

Assumethat “Buffer” isabuffer containing aproperly formatted ARDD message. “Handle’ isaword which
received theresult of the open. “MaxBytes’ isaword which containsthe actual number of bytesin “Buffer”.
“ActuaBytes’ isaword which receives the results of the IOCTL.

nov bx, Handl e ; handl e of device
nov cx, MaxBytes ; # of bytes to send
nov dx, seg Buffer ; get segnent of buffer
nov ds, dx
nov dx, offset Buffer ; ds:dx points to data
nov ax 4403h ; “Send Control Data to a Character Device”
i nt 21h ; call DOS for service
jc error_handl er ; if carry set, we had an error
nov Act ual Byt es, ax ; nunber of bytes sent
Handl e Dw ? ; handl e returned from open
Act ual Bytes DW ? ; hol ds nunber of bytes accepted by ARDD
Buf f er DB MaxByt es dup (?) ; the actual nunber of bytes required by your

application may differ

Return:
If carry flag clear:

AX=number of bytes accepted by ARDD

If carry flag set, AX may contain one of the following errors:

0001h Invalid Function

0005h Access Denied

0006h Invalid Handle

000DH Invalid Data
D.4. General IOCTL (0x440C)

To send a command/request to the ARDD, use the “Handl€” obtained from the open.
Example:

Assume that “Buffer” is abuffer containing information to be passed to the ARDD or a buffer to receive
information from the ARDD. “Handle” is aword which received the result of the open. “MagjorCode” and
“MinorCode” represent the command ID for the ARDD function you wish to have performed.

Note:  The buffer must be large enough to hold any information returned by the ARDD.

32



nov bx, Handl e ; handl e of device

nov ch, Mj or Code maj or function code

nov cl, M norCode ; mnor function code

nov dx, seg Buffer ; get segnment of buffer

nov ds, dx

nov dx, offset Buffer ; ds:dx points to data

nov ax 440Ch ; “General |OCTL”

int 21h ; call DOS for service

jc error_handl er ; if carry set, we had an error

Handl e D\N ? ; handl e returned from open
Buf f er DB 200 dup (?) ; the actual nunber of bytes required by each call
may differ.
Return:
If carry flag clear:
function completed successfully
If carry flag set, AX may contain one of the following errors:
0001h Invalid Function
0005h Access Denied
0006h Invalid Handle
0O0ODH Invalid Data
D.5. Multiplex Interrupts (INT 2Fh)

To send commands to the ARDD using software interrupt 2Fh follow the procedure bel ow.
Example:

Assumethat “Buffer” isabuffer containing information to be passed to the ARDD. “AEM” holdsthe/AEM
value passed the ARDD on the “config.sys’ line. “CMD” isone of the command functions as described in
section 9 of this document.

Note:  The buffer must be large enough to hold any information returned by the ARDD.

nov ah, AEM ; | AEM paraneter into AH
nov al, CVD ; Conmand

nov cx, MaxBytes ; # of bytes to send

nov dx, seg Buffer ; get segnent of buffer
nov ds, dx

nov si, offset Buffer ; ds:si points to data

| oad additional paraneters

i nt 2Fh ; call DOS for service
jc error_handl er ; if carry set, we had an error
AEM DB ? ; | AEM par aneter from “config. sys”
Buf f er DB 200 dup (?) ; the actual nunber of bytes required by each call
may differ.

33



Return:

Return values and flags are command dependent.



Appendix E.

Sample Code -- AE/PE

E.lL General IOCTL Usage

The following sections provide sample code fragments depicting the process used for making general IOCTL callsto
the ARDD. These commands are available to either the AE or PE.

E.1L Get Device Information [Minor Code=80h]
The following code fragment may be used to query the ARDD for alist of supported facilities.

nov bx, Handl e ; handl e of device
nov ch, 0Ah ; major code for “ARDD’
nov cl, 80h ; mnor code = “Get Device Information”
nov dx, seg Buffer ; get segnment of buffer
nov ds, dx
nov dx, offset Buffer ; ds:dx points to data
nov word ptr Buffer, 13h; nunber of bytes in buffer
nov ax 440Ch ; “CGeneral |QOCTL”
int 21h ; call DOS for service
jc error_handl er ; if carry set, we had an error
Handl e D\N ? ; handl e returned from open
Buf f er DB 13h dup (?) ; buffer to hold ARDD device infornation
Return:
If carry flag clear:
function completed successfully
If carry flag set, AX may contain one of the following errors:
0001h Invalid Function
0005h Access Denied
0006h Invalid Handle
00ODH Invalid Data
E.12. Get Return/Status [Minor Code=81h]

The following code fragment may be used to query the ARDD for the value of the last return/status.

nov
nov
nov
nov
nov
nov
nov
int
jc

Handl e D\N
Buf f er DwW

bx, Handl e

ch, 0Ah

cl, 81h

dx, seg Buffer
ds, dx

dx, offset Buffer
ax 440Ch

21h

error_handl er

handl e of device
maj or code for “ARDD
m nor code = “Get Return/Status”

; get segnent of buffer

ds: dx points to data

“Ceneral |OCTL”

call DCS for service

if carry set, we had an error

handl e returned from open
buffer to hold return/status from ARDD

35



Return:
If carry flag clear:

function completed successfully

If carry flag set, AX may contain one of the following errors:

0001h Invalid Function
0005h Access Denied
0006h Invalid Handle
000DH Invalid Data
E.13. Get Header Address[Minor Code=82h]

The following code fragment may be used to query the ARDD for afar addressto its device header.

nov bx, Handl e ; handl e of device

nov ch, 0Ah ; major code for “ARDD’

nov cl, 82h ; mnor code = “Get Header Address”

nov dx, seg Buffer ; get segment of buffer

nov ds, dx

nov dx, offset Buffer ; ds:dx points to data

nov ax 440Ch ; “General |OCTL”

int 21h ; call DOS for service

jc error_handl er ; if carry set, we had an error
Handl e Dw ? ; handl e returned from open
Buf f er DD ? ; buffer to hold segnent:offset address of device

header

Return:
If carry flag clear:

function completed successfully

If carry flag set, AX may contain one of the following errors:

0001h Invalid Function

0005h Access Denied

0006h Invalid Handle

00ODH Invalid Data
E.2. INT 2Fh Facilities Usage

The following sections provide sample code fragments depicting the process used to communicate to the ARDD
using INT 2Fh facilities. These processes may only be used by an AE which has been loaded using an entry in
“config.sys”.

E.2.1 INT 2Fh “Open” Function

To open the ARDD, place the device name “ARDDAENN” in abuffer and call INT 2Fh with a pointer to that buffer.
Example:

nov ah, AEM ; | AEM par aneter into AH
nov al, 10h ; “open” command

36



nov dx, seg Fil eNane ; get segnment of buffer

nov ds, dx and place it in ds
nov si, offset FileName ; ds:si points to device nane
i nt 2Fh ; call DOS for service
jc error_handl er ; if carry set, we had an error
nov Handl e, ax ; store handle for |ater
Fi |l eNane DB ' ARDDAEOO' , 0; fil e name buffer
Handl e DwW ? ; handl e returned from open
AEM DB ? ; hol ds / AEM par anet er
Return:
If carry flag clear:
AX=handle of open device.
If carry flag set, AX may contain one of the following errors:
0002h file not found
0005h access denied
E.2.2. INT 2Fh “Close” Function
To close the ARDD, provide the “Handle” which was returned from the open.
Example:
nov ah, AEM ; | AEM par aneter into AH
nov al, 20h ; “close” conmand
nov bx, Handl e ; handl e of device
i nt 2Fh ; call DOS for service
jc error_handl er ; if carry set, we had an error
Handl e D\N ? ; handl e returned from open
AEM DB ? ; hol ds / AEM par anet er
Return:

If carry flag clear:

function completed successfully

If carry flag set, AX may contain the following error:

0006h invalid file handle

E.2.3. INT 2Fh “10CTL” Function

To send commands to the ARDD, use the “Handl€” obtained from the open.
Example:

Assumethat “Buffer” isabuffer containing aproperly formatted ARDD message. “Handle”’ isaword which
received theresult of the open. “MaxBytes’ isaword which containsthe actual number of bytesin “Buffer”.
“ActuaBytes’ isaword which receives the results of the IOCTL.

37



nov ah, AEM ; | AEM paraneter into AH

nov al, 30h ; “1OCTL” conmand
nov bx, Handl e ; handl e of device
nov cx, MaxBytes ; # of bytes to send
nov dx, seg Buffer ; get segnment of buffer
nov ds, dx
nov si, offset Buffer ; ds:si points to data
i nt 2Fh ; call DOS for service
jc error_handl er ; if carry set, we had an error
nov Act ual Bytes, ax ; nunber of bytes sent
Handl e Dw ? ; handl e returned from open
Actual Bytes DW ? ; hol ds nunber of bytes accepted by ARDD
AEM DB ? ; hol ds / AEM par anet er
Buf f er DB MaxByt es dup (?) ; the actual nunber of bytes required by your
application may differ
Return:

If carry flag clear:
AX=number of bytes accepted by ARDD

If carry flag set, AX may contain the following error:

0005h access denied

0006h invalid file handle

000dh invalid data
E.2.4. INT 2Fh “GENIOCTL"” Function

To send a command/request to the ARDD, use the “Handl€” obtained from the open.
Example:

Assume that “Buffer” is a buffer containing information to be passed to the ARDD or a buffer to receive
information from the ARDD. “Handle” isaword which received the result of the open. “MagjorCode” and
“MinorCode” represent the command ID for the ARDD function you wish to have performed.

Note:  The buffer must be large enough to hold any information returned by the ARDD.

nov ah, AEM ; | AEM par aneter into AH
nov al, 40h “GENI CCTL" comrand

nov bx, Handl e ; handl e of device

nov ch, Mj or Code ; major function code

nov cl, M norCode ; mnor function code

nov dx, seg Buffer ; get segment of buffer

nov ds, dx

nov si, offset Buffer ; ds:si points to data

i nt 2Fh ; call DOS for service

jc error_handl er ; if carry set, we had an error
Handl e DwW ? ; handl e returned from open
AEM DB ? ; hol ds / AEM par anet er
Buf f er DB 200 dup (?) ; the actual nunber of bytes required by each call

may differ.

38



Return:
If carry flag clear:

function completed successfully

If carry flag set, AX may contain the following error:

0005h access denied
0006h invalid file handle
000dh invalid data

39



Appendix F.

Thi s page intentionally blank

40



Appendix G.

Thi s page intentionally blank

41



Appendix H.

Thi s page intentionally blank

42



Appendix I. Sample Code -- ARDD
This section contains code fragments from a functional ARDD device driver.

l.1. The ARDD Header

Thefirst device driver header islocated at offset O in the device driver image file. The header defines such things as
the device name, location of next device header, if in the same image file, address of the strategy and interrupt
routines and an attribute word. The header follows this format:

dhLi nk DWORD ? ; link to next driver
dhAttri butes WORD ? ; device attributes
dhStrat egy WORD ? ; strategy-routine offset
dhl nterrupt WORD ? ; interrupt-routine offset
dhNane BYTE Brarararirirdrire ; devi ce nane

The dhLink field must be -1 (OFFFFFFFFh) if thisisthe last device-driver header in the file. Otherwise, the low 16
bits must contain the offset (from the beginning of the load image) to the next device-driver header, and the high 16
bits must contain zero.

The dhAttributes field specifies the device type and provides additional information that DOS uses when creating
requests. The bitsin thisfield used for a character device driver, like the ARDD, is asfollows:

Bit Meaning

0 Specifies that the device is the standard input device. This bit must be set to 1 if the driver replaces the resident
device driver that supports the standard input device.

1 Specifies that the device is the standard output device. This bit must be set to 1 if the driver replaces the resident
device driver that supports the standard output device.

2 Specifies that the device isthe NUL device. The resident NUL device driver cannot be replaced. This bit must be

zero for al other device drivers.

3 Specifies that the deviceis the clock device. This bit must be set to 1 if the driver replaces the resident device
driver that supports the clock device.

4 For a character-device driver. Specifies that the driver supports fast character output. If thisbit is set, DOS issues
Interrupt 29h (with the character value in the AL register) when a program writes to the device. During its
initialization, the device driver must install a handler (for Interrupt 29h) that carries out the fast output.

6 Specifies whether the device supports the generic IOCTL function. This bit must be set to 1 if the device driver
implements Generic IOCTL (Device-Driver Function 13h).

7 Specifies whether the device supports IOCTL queries. This bit must be set to 1 if the device driver implements
IOCTL Query (Device-Driver Function 19h).

11 Specifies whether the driver supports Open Device and Close Device (Device-Driver Functions 0Dh and OEh).
This bit must be set to 1 if the driver implements these functions.

13 Specifies whether the driver supports Output Until Busy (Device-Driver Function 10h). This bit must be set to 1 if
the driver implements this function.

14 Specifies whether the driver supports IOCTL Read and IOCTL Write (Device-Driver Functions 03h and OCh).
This bit must be set to 1 if the driver implements these functions.

15 Specifies whether the driver supports a character device or ablock device. This bit must be set to 1 for all ARDD

implementations.
Note:  Any bitsin the dhAttributes field that are not used for a given device type must be zero.
The dhStrategy and dhinterrupt fields contain the offsets to the entry points of the strategy and interrupt routines.
Since these fields are 16-bit values, the entry points must be in the same segment as the device-driver file header. For

adevicedriver in abinary image file, the offsets are in bytes from the beginning of the file; for adriver in an .EXE-
format file, the offsets are in bytes from the beginning of the file'sload image.

43



The dhName field is an 8-byte field that contains the device name. A character-device driver must supply alogical-
device name of no more than eight characters. If it has fewer than eight characters, the name must be left-aligned and
any remaining bytesin the field must be filled with space characters (ASCII 20h). The device name must not contain
a“’.

A sample ARDD device header is shown below:

org 0

Header 1:
WORD of f set Header 2 ; link to next device driver
WORD 0
WORD 1100100001000000b ; device attribute word
WORD Strategyl ; “strategy” routine entry point
WORD Interruptl ; “interrupt” routine entry point
BYTE ' ARDDAEOO' ; | ogical -device nane

somewhere else in the device imge file

Header 2:
DWORD -1 ; signal end of chain
WORD 1100100001000000b ; device attribute word
WORD Strat egy?2 ; “strategy” routine entry point
WORD Interrupt2 ; “interrupt” routine entry point
BYTE ' ARDDPEOO' ; | ogical -device nane
[.2. Hooking the INT 2Fh Vector

The following code fragment may be used by the ARDD to hook the INT 2Fh vector. Once hooked, the “ NewInt2F”
function will be called with every instance of an INT 2Fh.

a dl nt 2F DWORD ?? ; far address of old INT 2Fh vector
Er ror Msg BYTE " ARDD unabl e to be used by Mcrosoft Wndows', 0d, Oa, '$'
Newl nt 2F proc far

assune cs: code, ds:nothing, es:nothing

code to process | NT 2Fh nessages

Newl nt 2Fh éndp
Hook| nt 2f proc near

assune cs: code, ds:code

nov ah, 35h ; DOS “Get Interrupt Vector” conmand
nov al, 2fh ;  vector to get (2Fh)
int 21h

; returns with es:bx=far address of vector

nov ax, es
nov word ptr [Adlnt2F+2], ax ; store offset
nov word ptr [Odlnt2F], bx ; store segnent

44



nov dx, offset Newl nt2F ; ds:dx=far address of new vector

nov ah, 25h ; DOS “Set Interrupt Vector” command
nov al, 2fh ; vector to set (2Fh)

int 21h

ret

Hookl nt 2f endp

|.3. TheINT 2Fh Process

1.3.1. Preventing the loading of Microsoft Windows

An ARDD that has hooked the INT 2Fh vector may use a process similar to the example below to prevent the
loading of the Microsoft Windows Standard or Enhanced Mode kerndl.

a dl nt 2F DWORD ?? ; far address of old INT 2Fh vector
Er r or Msg BYTE " ARDD unabl e to be used by Mcrosoft Wndows', 0d, Oa, '$'
New nt 2F proc far

assune cs: code, ds:nothing, es:nothing

cnp ax, 1605h ; 1s this the Wndows startup
jz Bl ockSt art up
jnp cs: [ A dl nt 2F] ; call the rest of the chain
Bl ockSt art up:
push ds ; save ds
push cs ; Move cs
pop ds ; into cs for far pointer to nsg

assune ds: code

nov dx, of fset ErrorMsg

nov ah, 9 ; display driver sign-on nessage
i nt 21h

pop ds ; restore original ds

assune ds: not hi ng

nmv cx, 1 ; block windows start test
iret
New nt 2F endp
|.4. “Open” Process
<FOR FURTHER STUDY>
l.5. “Close” Process
<FOR FURTHER STUDY >

45



|.6.

l.7.

“IOCTL"” Process
<FOR FURTHER STUDY>

“GENIOCTL"” Process
<FOR FURTHER STUDY >

46



Appendix J. Sample Code -- VxD

This section contains the source code for afunctional Microsoft Windows VxD.

Code was created using the Microsoft Family of programming tools. Thisincludes the Microsoft Windows 3.0
Device Driver Kit with MASM5, LINK386 and EXEHDR.EXE

J.1 ASIARDD.386 Source File (asiardd.asm)

name ASI ARDD

title VxD broadcast driver
page 60, 132

. 386p

B

; Modul e nane: ASI ARDD

; Description: This is a Wndows Enhanced Mdde Virtual Device Driver that is
; responsi bl e for broadcasting VM status nmessages to an installed
; ARDD

EE R R e R R I R XX

. xli st

include vhm i nc

st
ARDD_VM_SUSPEND EQU 10h
ARDD VM RESUME EQU 20h

ARDD_VM NOT_EXECUTEABLE EQU 30h

; Virtual Device declaration
Decl are_Virtual _Device ASIARDD, '1', '0', ASIARDD Control,\
Undef i ned_Devi ce_I D, Undefined_Init_Order
; Local Data
VxD_DATA SEG
I nt 2f AH db 0 ; value to place in AH prior to an INT 2Fh

VxD_DATA_ENDS

VxD_LOCKED_CODE_SEG

B R
’

; Control function:
; This is a call-back routine to handle the nessages that are sent to VWD s to
; control system operation.

B o R
’

Begi nProc ASI ARDD_Cont r ol
Control _Dispatch Sys_Critical _Init, ProtectedMdelnit

Control _Di spatch VM Suspend, <short SendSuspend>
Control _Di spatch VM Resune, <short SendResune>

a7



EndPr oc

Control _Di spatch VM Not _Execut eabl e,

clc
ret

ASI ARDD_Contr ol

VxD_LOCKED_CODE_ENDS

VxD_CODE_SEG

Begi nProc

EndPr oc

Begi nProc

EndPr oc

Begi nProc

EndPr oc

SendSuspend

nov ebx, [ebx.CB_VM D]
nov cx, ARDD VM SUSPEND
nov ah, cs:|nt2fAH

nov al, 10h

push DWORD PTR 2f h
VMveal | Exec_VxD_I nt

clc

ret

SendSuspend

SendResune

nov ebx, [ebx.CB_VM D]
nmv cx, ARDD VM RESUME
nov ah, cs:Int2fAH

nov al, 10h

push DWORD PTR 2f h
VMveal | Exec_VxD_I nt

clc

ret

SendResune

SendNot Execut eabl e

nov ebx, [ebx.CB_VM D]

nov cx, ARDD VM NOT_EXECUTEABLE
nmv ah, cs:Int2fAH

nov al, 10h

push DWORD PTR 2f h

VMveal | Exec_VxD_I nt

clc

ret

SendNot Execut eabl e

VxD_CODE_ENDS

48

<short SendNot Execut eabl e>



VxD_REAL_I NI T_SEG

Begi nProc
| FDEF DEBUG

push
push

nov
nov

int

pop
pop

ENDI F

cnp
jz
nov
int
xor
xor

xor

nov
ret

Er r VxDLd db

kToLoad

cnp
jnz

nmov
int
xor
xor

xor

nov
ret

Errl nt Hdl db

I nt Handl el sCk:

Real Model ni t Code

ax
d

di, ax
ax, Offffh

2fh

d
ax

bx, Loadi ng_From | NT2F
short CkToLoad

dx, offset ErrvxDLd
ah, 9
21h

bx, bx
si, si
edx, edx

ax, Abort_Wn386_Load + No_Fail _Message

"Attenpt to load nultiple instances of ASI ARDD. 386'
edx, O

short | ntHandl el sCk

dx, offset ErrlntHd

ah, 9

21h

bx, bx

si, si

edx, edx

ax, Abort_Wn386_Load + No_Fail _Message

"Illegal Int 2Fh value - |load aborted', O0dh, Oah, '$

; remenber edx has to be passed to protected node

xor
xor

xor
ret

EndPr oc

VxD_REAL_I NI T_ENDS

VxD_| CODE_SEG

bx, bx
si, si
ax, ax

Real Mbdel ni t Code

49

0dh, Oah,

|$|



Begi nProc Pr ot ect edModel ni t

nov [Int2f AH, dI
clc
ret

EndPr oc Pr ot ect edModel ni t

VxD_| CODE_ENDS

END Real Mbdel ni t Code ; real node entry point

J.2 ASIARDD.386 Definition file (asiar dd.def)

LI BRARY ASI ARDD
DESCRI PTI ON ' ASI ARDD Vi rtual Broadcast Device'

EXETYPE DEV386

SEGMVENTS
_LTEXT PRELOAD NONDI SCARDABLE
_LDATA PRELOAD NONDI SCARDABLE
_I TEXT CLASS ' | CODE' DI SCARDABLE
_I DATA CLASS ' | CODE' DI SCARDABLE
_TEXT CLASS ' PCODE' NONDI SCARDABLE
_DATA CLASS ' PCODE' NONDI SCARDABLE
EXPORTS

ASI ARDD_DDB @

50



Appendix K. Sample Code -- Protected M ode Access

K.1. DPM1 Access Services
<FOR FURTHER STUDY >
This section will contain code fragments demonstrating procedures used to access ASI facilities by DPMI
applications.
K.2. Microsoft Windows GUI Applications Access
<FOR FURTHER STUDY >

This section will contain code fragments demonstrates procedures used to access ASI facilities from Microsoft
Windows GUI applications.

51



Appendix L. Structures

This section contains structures used by the ARDD.

L.1.

Byte Description

1-2 Length of Buffer

3 Major ARDD version number
4 Minor ARDD version number
5-12 Vendor string

13 Vendor major version number
14 Vendor minor version number
15 Number of AEs

16 Number of AE entry points
17 Number of UP callback slots

52

1
1
1
1
1
1
1
1
1

Get Device Information Structure

Length of returned buffer

The ARDD major version number
The ARDD minor version number
Vendor specific string

Vendor specific major version number
Vendor specific minor version number
Total number of bound AEs

Number of AE entry points

Number of user plane callback slots. Thisisused by
the ARDD during a bind request to provide virtua far
call services.



Appendix M. References

M.1
(1]

M.2

(2]
(3]
(4]

(5]

(6]

(7]

(8]

M.3
(9]

(10]
M.4
(11]

[12]

ANS Documents

ANS T1.607-1990, Telecommunications — Integrated Services Digital Network (ISDN) — Digital
Subscriber Sgnalling System Number 1 (DSS1) — Layer 3 Sgnalling Specification for Circuit-Switched
Bearer Service.

CCITT Documents

CCITT Recommendation 1.320 - 1988, ISDN Protocol Reference Model.
CCITT Recommendation 1.515 - 1988, Parameter Exchange for ISDN Networking.

CCITT Recommendation Q.921-1988 (also designated CCITT Recommendation 1.441-1988), |SDN User-
Network Interface Data Link Layer Specification.

CCITT Recommendation Q.931-1988 (also designated CCITT Recommendation 1.451-1988), ISDN User-
Network Interface — Layer 3 Specification for Basic Call Control.

CCITT Recommendation V.110 -1988, Support of Data Terminal Equipments (DTESs) with V-series Type
Interfaces by an Integrated Services Digital Network (ISDN).

CCITT Recommendation V.120 -1988, Support by an ISDN of Data Terminal Equipment with V-series Type
Interfaces with Provision for Statistical Multiplexing.

CCITT Recommendation X.25 -1984, Interface between Data Terminal Equipment (DTE) and Data Circuit-
Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and Connected to Public Data
Networks by Dedicated Circuit.

I SO Documents

SO 8824:1987(E), Information processing systems — Open Systems | nter connection — Specification of
Abstract Syntax Notation One (ASN.1).

SO 8825:1987(E), Information processing systems — Open Systems | nter connection — Specification of
Basic Encoding Rules for Abstract Syntax Notation One (ASN.1).

Other Documents

NIST Special Publication 500-183, Stable Implementation Agreements for Open Systems I nter connection
Protocols, Version 4, Edition 1, December 1990.

MS-DOS Programmer's Reference (Document Number SY 0766b-R50-0691).

53






